Все разделы / Дискретная математика /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (100 руб.)

Дискретная математика. Контрольная работа. Вариант №7

Дата закачки: 18 Декабря 2013
Продавец: ambagoestoyou
    Посмотреть другие работы этого продавца

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
№1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\\C) È (B\\C) = (AÈ B)\\C б) (A\\B)´ C=(A´ C)\\(B´ C).

№2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A´ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(b,3),(b,1),(b,4),(c,3),(c,2)}; P2 = {(1,3),(1,4),(2,2),(3,3),(4,3),(4,4)}.

№3 Задано бинарное отношение P Í R2; найти его область определения и область значений. Проверить по определению, является ли P рефлексивным, симметричным, антисимметричным, транзитивным., P = {(x,y) | x2 + y2 = 4}.

№4 Доказать утверждение методом математической индукции: для n ³ 2.

№5 Восемь студентов должны сдавать зачет по пяти предметам: физике, архитектуре ЭВМ, математическому анализу, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?

№6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 5, 6, 16? б) делящихся ровно на одно из этих трех чисел?

№7 Найти коэффициенты при a=x4·y·z3, b=x·y4·z, c=y2·z4 в разложении (3·x2+5·y+2·z)6.

№8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 3·an+2 – 8·an+1 + 5·an = 0· и начальным условиям a1=10, a2=20.

№9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).

№10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v3 до остальных вершин графа, используя алгоритм Дейкстры.

Коментарии: Год сдачи - 2010.

Размер файла: 858,5 Кбайт
Фаил: Упакованные файлы (.zip)

-------------------
Обратите внимание, что преподователи часто переставляют варианты и меняют исходные данные!
Если вы хотите что бы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !




Страницу Назад

  Cодержание / Дискретная математика / Дискретная математика. Контрольная работа. Вариант №7

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!