Все разделы / Теория вероятности /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (3000 руб.)

Контрольная работа по дисциплине: Теория вероятностей (все варианты)

Дата закачки: 07 Апреля 2014
Продавец: Jack
    Посмотреть другие работы этого продавца

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
10.2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
10.3. Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна 0,7; для второго и третьего стрелков эти вероятности соответственно равны 0,8 и 0,9. Найти вероятность того, что: а) только один из стрелков поразит цель; б) только два стрелка поразят цель; в) все три стрелка поразят цель.
10.4. Из трёх орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что: а) только один снаряд попадёт в цель; б) только два снаряда попадут в цель; в) все три снаряда попадут в цель.
10.5. Студент знает 40 из 50 вопросов программы. Найти вероятность того, что студент знает 2 вопроса, содержащиеся в его экзаменационном билете.
10.6. Две команды по 20 спортсменов производят жеребьёвку для присвоения номеров участникам соревнований. Два брата входят в состав различных команд. Найти вероятность того, что братья будут участвовать в соревнованиях под одним и тем же номером 18.
10.7. Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9. Найти вероятность того, что: а) оба стрелка поразят мишень; б) оба стрелка промахнутся; в) только один стрелок поразит мишень; г) хотя бы один из стрелков поразит мишень.
10.8. Вероятность хотя бы одного попадания при двух выстрелах равна 0,99. Найти вероятность четырёх попаданий при пяти выстрелах.
10.9. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
10.10 Две перфораторщицы набили по одинаковому комплекту перфокарт. Вероятность того, что первая перфораторщица допустит ошибку, равна 0,1; для второй перфораторщицы эта вероятность равна 0,2. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась вторая перфораторщица.

11.1. Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
11.2. Среднее число вызовов, поступающих на АТС в 1 мин, равно двум. Найти вероятность того, что за 4 мин поступит: а) 5 вызовов; б) менее пяти вызовов; в) более пяти вызовов. Предполагается, что поток вызовов – простейший.
11.3. Среднее число кораблей, заходящих в порт за 1 ч, равно трём. Найти вероятность того, что за 4 ч в порт зайдут: а) 6 кораблей; б) менее шести кораблей; в) не менее шести кораблей. Предполагается, что поток кораблей – простейший.
11.4. Среднее число заявок, поступающих на предприятие бытового обслуживания за 1 ч, равно четырём. Найти вероятность того, что за 3 ч поступит: а) 6 заявок; б) менее шести заявок; в) не менее шести заявок.
11.5. Среднее число самолётов, прибывающих в аэропорт за 1 мин, равно трём. Найти вероятность того, что за 2 мин прибудут: а) 4 самолёта; б) менее четырёх самолётов; в) не менее четырёх самолётов.
11.6. Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что событие наступит 60 раз в 100 испытаниях.
11.7. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие появится не менее 20 и не более 30 раз.
11.8. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что событие наступит 12 раз в 100 испытаниях.
11.9. Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожидать отклонение относительной частоты появления события от его вероятности не более, чем на 0,04.
11.10. Вероятность наступления события в каждом из независимых испытаний равна 0,8. Произведено 400 испытаний. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не более, чем на 0,09.

В задачах 12.1-12.10 требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
12.1. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.1 xi 10 12 20 25 30
 pi 0,1 0,2 0,1 0,2 0,4
12.2. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.2 xi 8 12 18 24 30
 pi 0,3 0,1 0,3 0,2 0,1
12.3. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.3 xi 30 40 50 60 70
 pi 0,5 0,1 0,2 0,1 0,1
12.4. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.4 xi 21 25 32 40 50
 pi 0,1 0,2 0,3 0,2 0,2
12.5. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.5 xi 10,2 12,4 16,5 18,1 20,0
 pi 0,2 0,2 0,4 0,1 0,1
12.6. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.6 xi 11 15 20 25 30
 pi 0,4 0,1 0,3 0,1 0,1
12.7. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.7 xi 12 16 21 26 30
 pi 0,2 0,1 0,4 0,2 0,1
12.8. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.8 xi 13 17 22 27 30
 pi 0,1 0,2 0,4 0,2 0,1
12.9. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.9 xi 14 18 23 28 30
 pi 0,1 0,4 0,3 0,1 0,1
12.10. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
12.10 xi 15 19 24 29 30
 pi 0,1 0,2 0,2 0,1 0,4

13.1. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=15, s =2, a =9, b =19, d =3.
13.2. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=14, s =4, a =10, b =20, d =4.
13.3. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=13, s =4, a =11, b =21, d =8.
13.4. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=12, s =5, a =12, b =22, d =10.
13.5. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=11, s =4, a =13, b =23, d =6.
13.6. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=10, s =8, a =14, b =18, d =2.
13.7. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=9, s =3, a =9, b =18, d =6.
13.8. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=8, s =4, a =8, b =12, d =8.
13.9. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=7, s =2, a =6, b =10, d =4.
13.10. Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a,b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=6, s =2, a =4, b =12, d =4.

Коментарии: Все задачи решены абсолютно правильно!
Если интересуют не все задачи, пишите в Л или оставляйте комментарии. Стоимость одной задачки 100 руб.

Размер файла: 81 Кбайт
Фаил: Microsoft Word (.docx)

-------------------
Обратите внимание, что преподователи часто переставляют варианты и меняют исходные данные!
Если вы хотите что бы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, предложений нет. Рекомендуем воспользваться поиском по базе.

Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !




Страницу Назад

  Cодержание / Теория вероятности / Контрольная работа по дисциплине: Теория вероятностей (все варианты)

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!