Все разделы / Вычислительная математика /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (1100 руб.)

Лабораторная работа №№1-5 по дисциплине: Вычислительная математика. Вариант №2

Дата закачки: 25 Августа 2014
Продавец: Jack
    Посмотреть другие работы этого продавца

Тип работы: Работа Лабораторная
Форматы файлов: Исполняемые фалы (EXE), Microsoft Word, Pascal
Сдано в учебном заведении: СибГУТИ

Описание:
Лабораторная работа №1
1. Задание
Известно, что функция f(x) удовлетворяет условию |f\\\'\\\'(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках xi=c+ih+((i mod 4+1)/5)*h(i+0,1,2,...,29) по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,&#188;29).
Для построения таблицы взять функцию f(x)=2c^(3)*sin(x/c), c=N+1. N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты

Лабораторная работа №2
1. Задание
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если max |xi^(k+1)-xi^(k)|<=0.0001 (k – номер итерации, k = 0,1,... ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. (см.скрин)
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты

Лабораторная работа №3
1. Задание
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие |Xn+1 - Xn|<e , (e – заданная точность), при этом X&#8776;(Xn + Xn+1)/2±e. Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси.
Вариант 2: x^(3)+3x^(2)-24x-10=0
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты

Лабораторная работа №4
1. Задание
Известно, что функция f(x) удовлетворяет условию |f\\\'\\\'(x)|<=c при любом x. Измерительный прибор позволяет находить значения f(x) с точностью 0.0001. Найти наименьшую погрешность, с которой f\\\'(x) можно найти по приближенной формуле: f\\\'(xi)=(f(xi+1)-f(xi-1))/2h. Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения f(x) с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения f\\\'(x) в точках xi=c+ih (i=0,1,2,...,20).
3. Выводит значения xi (i = 0,1,&#188; 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию f(x)=1/c^(2)*cos(cx), c=3*(0.1(N+1))^(3), где N – последняя цифра пароля. Тогда, точное значение производной f\\\'(x)=-1/c*sin(cx)
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты

Лабораторная работа №5
1. Задание
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001.
f(x)=e^(корень(x))*(x-1)*(x-10)*(x-N-1)*(x-0.5)
Считается, что требуемая точность достигнута, если выполняется условие |bk-ak|<e, (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,&#188; ), при этом, x`&#8776;(a+b)/2, fmax=f(x`).
N – последняя цифра пароля.
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты

Коментарии: Все работы успешно зачтены!
В архиве отчеты + программы к каждой работе
Преподаватель: Галкина М.Ю.

Размер файла: 1,7 Мбайт
Фаил: Упакованные файлы (.rar)

-------------------
Обратите внимание, что преподователи часто переставляют варианты и меняют исходные данные!
Если вы хотите что бы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, предложений нет. Рекомендуем воспользваться поиском по базе.

Сдай работу играючи!

Рекомендуем вам также биржу исполнителей. Здесь выполнят вашу работу без посредников.
Рассчитайте предварительную цену за свой заказ.



Страницу Назад

  Cодержание / Вычислительная математика / Лабораторная работа №№1-5 по дисциплине: Вычислительная математика. Вариант №2

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!