Все разделы / Методы оптимальных решений /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (300 руб.)

Лабораторные работы №1-5. Методы оптимальных решений. Вариант №4

Дата закачки: 11 Октября 2014
Продавец: rtt20
    Посмотреть другие работы этого продавца

Тип работы: Работа Лабораторная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
Лабораторная работа №1
Решение задачи линейного программирования
Файл отчета по лабораторной работе должен содержать:
1. Условие задачи в соответствии с вариантом. (Номер варианта выбирается по последней цифре пароля).
2. Смысл введенных переменных, математическую модель задачи.
3. Скриншот окна Excel с найденным решением задачи.
Так же следует приложить файл Excel с решением задачи.
Задание:
1. Составьте математическую модель задачи линейного программирования.
2. Решите её средствами Excel с использованием Поиска решений.
3. Проинтерпретируйте найденное решение.
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 30 телефонных, 26 телеграфных и 54 фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит 5 телефонных, 2 телеграфных и 3 фототелеграфных каналов, а кабель второго типа – 3 телефонных, 4 телеграфных и 11 фототелеграфных каналов. Стоимость 1 км кабеля первого типа равна 5 тыс.руб., второго типа – 2 тыс.руб..
Лабораторная работа №2
Задача о назначениях
Файл отчета по лабораторной работе должен содержать:
1. Условие задачи в соответствии с вариантом. (Номер варианта выбирается по последней цифре пароля).
2. Смысл введенных переменных, математическую модель задачи.
3. Скриншот окна Excel с найденным решением задачи.
4. Интерпретацию найденного в Excel решения.
Так же следует приложить файл Excel с решением задачи.
Задание:
1. Составьте математическую модель задачи о назначениях.
2. Решите её средствами Excel с использованием Поиска решений.
3. Проинтерпретируйте найденное решение.
В каждом из пяти филиалов производственного объединения могут изготовляться изделия пяти видов. Учитывая необходимость углубления специализации, в каждом из филиалов решено выпускать только один вид продукции, при этом каждый из видов изделий должен выпускаться одним из филиалов. Себестоимость каждого изделия в каждом из филиалов различна и задается матрицей C. Найти распределение выпуска продукции между филиалами, чтобы общая себестоимость выпущенной продукции была минимальной.
  
3 2 6 4 1
7 9 3 3 11
5 9 3 3 11
2 16 3 2 11
2 7 13 2 5
Лабораторная работа №3
Решение матричных игр 2x2 в смешанных стратегиях,
моделирование игры
Файл отчета по лабораторной работе должен содержать:
1.  Условие задачи в соответствии с вариантом (Номер варианта выбирается по последней цифре пароля).
2. Аналитическое решение задачи.
3. Результаты моделирования и выводы.
Задание:
1. Решите аналитически матричную игру 2x2, заданную платежной матрицей.
2. Проведите моделирование результатов игры с помощью таблицы равномерно распределенных случайных чисел, разыграв 30 партий; определите относительные частоты использования чистых стратегий каждым игроком и средний выигрыш, сравнив результаты с полученными теоретически в п.1.
( 6 14)
21 10 
Лабораторная работа №4
Решение игры как задачи линейного программирования
Файл отчета по лабораторной работе должен содержать:
1.  Условие задачи в соответствии с вариантом (Номер варианта выбирается по последней цифре пароля).
2. Нахождение верхней и нижней цены игры.
3. Запись игры как задачи линейного программирования.
4. Скриншот окна Excel с найденным решением задачи линейного программирования.
5. Решение игры.
Так же следует приложить файл Excel с решением задачи.
Задание:
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой суммой.
Решить матричную игру в MS Excel, записав ее как задачу линейного программирования.
( 1 4 0)
2 0 -2
-3 1 2 
Лабораторная работа №5
Решение задачи нелинейного программирования
Файл отчета по лабораторной работе должен содержать:
1.  Условие задачи в соответствии с вариантом (Номер варианта выбирается по последней цифре пароля).
2. Скриншот окна Excel с найденным решением задачи.
3. Проверку выполнения условий Куна-Таккера для найденного оптимального решения.
Так же следует приложить файл Excel с решением задачи.
Задание:
1. Решите задачу нелинейного программирования средствами Excel с использованием настройки Поиск решений (Номер варианта выбирается по последней цифре пароля).
2. Проверьте выполнение условий Куна-Таккера для найденной оптимальной точки.



Размер файла: 266,5 Кбайт
Фаил: Упакованные файлы (.rar)

-------------------
Обратите внимание, что преподователи часто переставляют варианты и меняют исходные данные!
Если вы хотите что бы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

    Скачано: 7         Коментариев: 0


Сдай работу играючи!

Рекомендуем вам также биржу исполнителей. Здесь выполнят вашу работу без посредников.
Рассчитайте предварительную цену за свой заказ.



Страницу Назад

  Cодержание / Методы оптимальных решений / Лабораторные работы №1-5. Методы оптимальных решений. Вариант №4

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!