Все разделы / Теория сложностей вычисл. процессов и структур /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (100 руб.)

Теория сложностей, вычислительных процессов и структур. Экзамен. Билет №1. 2016г

ID: 165088
Дата закачки: 08 Апреля 2016
Продавец: vasiakollaider
    Посмотреть другие работы этого продавца

Тип работы: Работа Экзаменационная
Форматы файлов: Microsoft Office
Сдано в учебном заведении: СибГУТИ

Описание:
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин


2. Оптимальным образом расставить скобки при перемножении матриц
М1[7x3], M2[3x8], M3[8x3], М4[3x5], M5[5x2]


Комментарии: Коментарии: Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 03.04.2016
Рецензия:Уважаемая
поздравляю Вас с успешным завершением курса ТСВПиС.
Галкина Марина Юрьевна

Размер файла: 44 Кбайт
Фаил: Упакованные файлы (.rar)

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, точных предложений нет. Рекомендуем воспользваться поиском по базе.


Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Теория сложностей вычисл. процессов и структур / Теория сложностей, вычислительных процессов и структур. Экзамен. Билет №1. 2016г

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
Z-PAYMENT VISA Card MasterCard Yandex деньги WebMoney Сбербанк или любой другой банк SMS оплата ПРИВАТ 24 qiwi PayPal

И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках

Здесь находится аттестат нашего WM идентификатора 782443000980
Проверить аттестат


Сайт помощи студентам, без посредников!