Все разделы / Дискретная математика /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (200 руб.)

Дискретная математика. Контрольная работа. Вариант №15

Дата закачки: 17 Июня 2016

Автор: gnv
Продавец: gnv1979
    Посмотреть другие работы этого продавца

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
Задача №1 . Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\\B) \\ C = (A\\C) \\ B  б) (A\\B)C=((AB)C)\\(BC).
Задача №2.  Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1  AB, P2  B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,3),(b,4),(c,3),(c,4)}; P2 = {(1,1),(1,4),(2,1),(2,2),(2,4),(3,3)}.
Задача №3. Задано бинарное отношение P  Z2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P = {(x,y) | (x + y) нечетно}.
Задача №4. Доказать утверждение методом математической индукции:
Задача №5. Бригада из одиннадцати взломщиков одновременно выходит на грабеж четырех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по трем одинаковым камерам (не менее чем по одному в каждую)?
Задача №6. Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 9, 10, 12? б) делящихся ровно на одно из этих трех чисел?
Задача №7. Найти коэффициенты при a=x2•y2•z3, b=x2•y3•z, c=y4•z4 в разложении (3•x+5•y2+2•z)6.
Задача№8.  Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2•an+2 + 9•an+1 + 7•an = 0• и начальным условиям a1=5, a2=30.
Задача № 9.
 Орграф задан матрицей смежности. Необходимо:  
а) нарисовать граф;  
б) выделить компоненты сильной связности;  
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задание 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;  
б) кратчайшее расстояние от вершины v1 до остальных вершин графа, используя алгоритм Дейкстры.

     


Коментарии: Работа сдана в 2016 году. Оценка Зачет

Размер файла: 170,9 Кбайт
Фаил: Упакованные файлы (.rar)

-------------------
Обратите внимание, что преподователи часто переставляют варианты и меняют исходные данные!
Если вы хотите что бы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, предложений нет. Рекомендуем воспользваться поиском по базе.




Страницу Назад

  Cодержание / Дискретная математика / Дискретная математика. Контрольная работа. Вариант №15

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!