Все разделы / Нефтяная промышленность /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (2999 руб.)

Модернизация вакуумного дегазатора и струйного насоса буровой установки. Замена вакуумного дегазатора «Каскад - 40» на аналогичное оборудование BD «Highlight» американского производства-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин

Дата закачки: 05 Августа 2016
Продавец: Preventer777
    Посмотреть другие работы этого продавца

Тип работы: Работа Курсовая
Форматы файлов: AutoCAD (DWG/DXF), КОМПАС, Microsoft Word
Сдано в учебном заведении: ИНиГ

Описание:
Модернизация вакуумного дегазатора и струйного насоса буровой установки. Замена вакуумного дегазатора «Каскад - 40» на аналогичное оборудование BD «Highlight» американского производства-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
2. Газирование бурового раствора

Газирование бурового раствора препятствует ведению нормального процесса бурения. Во-первых, вследствие снижения эффективной гидравлической мощности уменьшается скорость бурения, особенно в мягких породах; во-вторых, возникают осыпи, обвале и флюидопроявления в результате снижения эффективной плотности бурового раствора (а следовательно, и гидравлического давления на пласты); в-третьих, возникает опасность взрыва или отравления ядовитыми пластовыми газами (например, сероводородом). Пузырьки газа препятствуют удалению шлама из раствора, поэтому оборудование для очистки от шлама работает неэффективно. Кислоте газы, такие как двуокись углерода, могут привести к понижению рН раствора и вызвать его флокуляцию.
Снижение гидравлической мощности вследствие присутствия в растворе газа отрицательно сказывается на всем процессе бурения.
Газ в буровом растворе может находиться в свободном, жидком и растворенном состоянии. По мере перемещения потока раствора к устью пузырьки свободного газа увеличиваются в объеме в результате снижения давления, сливаются друг с другом, образуя газовые пробки, которые прорываются в атмосферу. Свободный газ легко удаляется из раствора в поверхностной циркуляционной системе путем перемешивания в желобах, на виброситах, в емкостях. При устойчивом газировании, например во время бурения при несбалансированном давлении, свободный газ удаляют из бурового раствора с помощью газового сепаратора. Пузырьки газа, которые не извлекаются из бурового раствора при перепаде давления между ними и атмосферой, оказываются вовлеченными в буровой раствор и для их удаления требуется дополнительная энергия. Полнота дегазации бурового раствора зависит от его плотности, количества твердой фазы, вязкости и прочности структуры. Существенную роль играют также поверхностное натяжение жидкости, размер пузырьков и сил1 взаимного притяжения. В связи с высоким поверхностным натяжением трудно поддаются дегазации буровые растворы на углеводородной основе, а также растворы, содержащие в качестве регулятора водоотдачи крахмал. Растворы, газированные сероводородом, создают особенные трудности при дегазации: система дегазации должна быть весьма эффективной, так как при объемной концентрации 0,1 % сероводород - опасный яд; сероводород взрывоопасен даже при объемной концентрации 4,3 % (для сравнения, нижний предел взрываемости метана 5 %); сероводород растворим в буровых растворах, его растворимость в воде приблизительно пропорциональна давлению; сероводород обладает высокой коррозирующей способностью.
Различная степень газирования бурового раствора требует применения разного оборудования для дегазации. Свободный газ удаляется достаточно просто. Поток раствора из межтрубного пространства поступает в сепаратор, где газ отделяется от раствора и направляется по отводной линии на факел. Оставшийся в растворе свободный газ удаляется в атмосферу окончательно на виброситах или в емкости для сбора очищенного от шлама раствора. Жидкие и растворимые газы удалить из раствора трудно, так как газ входит в межмолекулярную структуру нефтяной фазы бурового раствора. Легкие углеводороды (С1 - С5) можно извлечь с помощью вакуумного дегазатора, а тяжелите почти невозможно. Выходя из раствора в виде пара, эти газы причиняют много неприятностей.
Обычная схема дегазации бурового раствора при интенсивном поступлении газа (например, при несбалансированном давлении в скважине) показана на рис. 6

Рисунок 6- Схема дегазации бурового раствора
Газожидкостный поток из скважины 2, дойдя до вращающегося превентора 3, через регулируемый штуцер 4 и герметичные манифольды поступают в газовый сепаратор 5, где из раствора выделяется основной объем газа. Очищенный от свободного газа раствор поступает на вибросито 6 и собирается в первой емкости циркуляционной системы. Дальнейшая очистка раствора от газа осуществляется с помощью специального аппарата-дегазатора 7. Окончательная дегазация происходит в промежуточных емкостях 1 циркуляционной системы с помощью механических перемешивателей. Газовый сепаратор, используемый в качестве первой ступени очистки бурового раствора от газа (рис. 6.18), представляет собой герметичный сосуд сравнительно большого объема, оборудованный системой манифольдов, клапанов и приборов. Буровой раствор из скважины через вращающийся превентор и регулируемый штуцер по закрытому манифольду поступает по тангенциальному вводу 7 в полость газового сепаратора 1, где скорость потока резко снижается. В результате действия инерционного и гравитационного полей происходит интенсивное выделение из бурового раствора газа, который скапливается в верхней части сепаратора и отводится по трубопроводу 5 на факел. Буровой раствор, очищенный от свободного газа, собирается в нижней части газосепаратора, откуда он подается по линии 2 для очистки от шлама на вибросито.
Современные газовые сепараторы, имеющие вместимость 1-4 м3, рассчитаны на давление до 1,6 МПа и устанавливаются непосредственно над первой емкостью циркуляционной системы. Они оборудуются предохранительным клапаном 6, регулятором уровня бурового раствора поплавкового типа 3 и эжекторным устройством 11 для продувки и очистки сепаратора от накопившегося шлама.
Эжекторное устройство работает следующим образом. Воду, а в зимнее время пар пропускают через штуцер эжектора 11, в результате чего в сбросовом патрубке газосепаратора создается разрежение. При открытой сбросовой задвижке 10 скопившийся на дне газового сепаратора шлам 9 вместе с частью бурового раствора устремляется в камеру эжек-торного смесителя, подхватывается потоком воды (или пара) и выбрасывается из сепаратора наружу. После очистки полости сепаратора сбросовую задвижку 10 закрывают. Для контроля за давлением внутри сепаратора газовая часть его полости оборудуется манометром 4.
В период интенсивных газопроявлений и задавливания пластов буровым раствором в процессе газового выброса, когда сепаратор не в состоянии обеспечить разделение газожидкостного высокоскоростного потока, поток из скважины направляют непосредственно на факел. Однако такие ситуации очень редки и считаются аварийными. Регулятор уровня раствора 3 в полости сепаратора предназначен для того, чтобы исключить попадание газа в сливной патрубок очищенного раствора, так как создаются условия для его постоянного затопленного состояния с помощью поплавка 8.
Очищенный от свободного газа буровой раствор обычно поступает на вибросито. Однако при наличии в растворе токсичного газа, например сероводорода, поток из сепаратора по закрытому трубопроводу сразу подается на дегазатор для очистки от газа. В этом случае только после окончательной дегазации раствор очищают от шлама. В качестве второй, а иногда и единственной ступени очистки раствора от газа обычно применяют дегазаторы, которые условно классифицируют на следующие типы: по значению давления в камере - на вакуумные и атмосферные; по способу подачи газированного бурового раствора в камеру - на гравитационные, эжекционные и центробежные. При центробежной подаче бурового раствора используют, как правило, самопродувающиеся центробежные насосы. В вакуумных дегазаторах иногда применяют самозаполняющиеся центробежные насосы. Наибольшее распространение в отечественной и зарубежной практике получили вакуумные дегазаторы с эжекционной и центробежной подачей газированного бурового раствора. Разрежение в полости таких дегазаторов создается вакуумным насосом и эжектором. Газированный раствор подается в камеру дегазаторов обычно за счет разности давлений между атмосферой и вакуумированной камерой. Это не самый эффективный, но очень надежный способ подачи бурового раствора в дегазатор. Обычно центробежные насосы для этой цели непригодны вследствие способности «запираться» газовыми пробками.
Степень вакуума в камере дегазаторов - наиболее важный технологический фактор дегазации и определяется не только разрежением в камере эжектора и техническими возможностями вакуум-насосов, но и, прежде всего, высотой всасывающей линии. Она должна быть такой, чтобы в камере дегазатора обеспечивался вакуум 0,03 МПа.
Другим важным фактором, влияющим на глубину дегазации бурового раствора в дегазаторе, является длительность нахождения раствора в камере. Чем выше скорость циркуляции раствора в камере дегазатора, тем меньше времени раствор находится в ней и, следовательно, хуже дегазируется. Для улучшения дегазации необходимо уменьшать скорость циркуляции бурового раствора. Так, при циркуляции 24 л/с дегазация каждой порции раствора в аппарате вакуумного типа будет длиться 25 с, а при 48 л/с - около 12 с. Практически полная дегазация бурового раствора в аппаратах вакуумного типа происходит за 10 - 20 с.
С помощью газового сепаратора удается выделять из бурового раствора десятки кубических метров газа в минуту. В результате на вторую ступень дегазации - в дегазатор - поступает буровой раствор с содержанием газа не более 20 %. Некоторые типы вакуумных дегазаторов обеспечивают скорость извлечения газа 0,1-0,25 м3/мин, пропуская буровой раствор объемом 1 - 3 м3/мин. В худшем случае остаточное содержание газа в буровом растворе после обработки в дегазаторе не превышает 2 %.
Типичным представителем дегазаторов вакуумного типа, используемых в отечественном бурении, является дегазатор типа ДВС. В зарубежной практике распространены вакуумные аппараты, выпускаемые фирмой «Свако».
Вакуумный дегазатор представляет собой двухкамерную герметичную емкость, вакуум в которой создается насосом. Камеры включаются в работу поочередно при помощи золотникового устройства. Пропускная способность дегазатора по раствору достигает 45 л/с; остаточное газосодержание в растворе после обработки не превышает 2 %. Привод вакуумного насоса осуществляется от электродвигателя мощностью 22 кВт.
Центробежно-вакуумный аппарат (ЦВА), или центробежно-вакуумный дегазатор (рис. 7) состоит из цилиндрического вертикально установленного корпуса 1, 2, внутри которого с высокой частотой вращается вал 4 с ротором 10, подобным рабочему колесу центробежного насоса с загнутыми назад лопатками. Поступающий в ЦВА газированный буровой раствор интенсивно разбрызгивается ротором тонким слоем внутри корпуса и дегазируется. Дегазированный раствор перекачивается обратно в ЦС с помощью осевого насоса, а выделившийся из раствора газ отводится вентилятором 8 по отводным каналам наружу.


Рисунок 7 - Центробежно-вакуумный дегазатор:
1, 2 - части корпуса; 3 - труба; 4 - вал; 5 - осевая турбина; 6 - клапан; 7 - пластинчатый деструктор; 8 - вентилятор; 9 - патрубки для отвода газа; 10 - ротор; 11, 12 – подшипники;
Центробежно-вакуумный аппарат обеспечивает не только эффективную дегазацию буровых растворов, но и интенсивное перемешивание входящих в него жидких и твердых компонентов.
В используемых в зарубежной практике атмосферных аппаратах дегазация бурового раствора происходит в результате турбулизации тонкого плоского потока. Обычно раствор в дегазатор такого типа поступает при подаче насоса примерно 35 л/с, чтобы скорость течения на входе в дегазатор составляла примерно 1 м/с. В камере дегазатора имеется система наклонных плоских перегородок, по которым стекает, периодически завихряясь, буровой раствор. Толщина слоя раствора на перегородках 10- 15 мм, а длина пути раствора 3,5 м.
Отечественной промышленностью широко используется вакуумный дегазатор ДВС.
Технологический процесс дегазации буровых растворов в двухкамерных вакуумных дегазаторах происходит следующим образом (рис. 8). Поступающий из скважины газированный буровой раствор проходит грубую очистку от шлама и газа на вибрационном сите и попадает в первую емкость циркуляционной системы или в специальную емкость дегазатора рис. 8.
Принципиальная схема двухкамерного вакуумного дегазатора:



Рисунок 8 - Схема двухкамерного вакуумного дегазатора
1, Г - сливные клапаны; 2, 2 - всасывающие клапаны; 3, 3 - дегазационные камеры; 4, 4 -золотники регуляторов уровня; 5 - клапан-разрядник; 6 - вакуумный ресивер; 7 - регулятор вакуума

Всасывающий клапан под действием давления бурового раствора открывается, и раствор начинает поступать в дегазационную камеру. Для обеспечения дегазации бурового раствора достаточно включить вакуумный насос ВВН-2. Так как в момент включения клапан-разрядник 5 находится в одном из крайних положений, то одна из дегазационных камер 3 подключена к вакуумному насосу, а вторая 3 сообщается с атмосферой. Работающий вакуумный насос создает в камере 3 разреженность, поэтому сливной клапан 1 закрыт под действием атмосферного давления.
Когда в камере 3 будет достигнуто заданное значение вакуума, мембрана золотникового механизма 7, сжав пружину и заняв нижнее положение, переместит шток золотника и соединит мембранную полость всасывающего клапана 2 с вакуумным ресивером 6. После этого мембрана перемещается вверх, всасывающий клапан открывается, поступающая в дегазационную камеру жидкость очищается от газа и собираемся в сборнике.
По мере заполнения сборника дегазированной жидкостью шток золотника 4 поплавкового регулятора перемещается под действием поплавка и системы рычагов, и при предельном уровне жидкости мембранная полость клапана-разрядника оказывается соединенной с вакуумным ресивером 6. Клапан-разрядник соединяет заполненную камеру 3 с атмосферой, а порожнюю камеру 3 подключает к вакуумному насосу при помощи клапана 2. В этот момент дегазированный буровой раствор начинает выливаться в емкость через сливной клапан 1. Одновременно в камере 3 создается разрежение, и нагнетательный клапан 1 закрывается. Как только камера 3 заполнится буровым раствором, золотник 4 соединит мембранную полость клапана-разрядника с вакуумным ресивером, и произойдет следующий цикл переключения камер.
В зависимости от газонасыщенности буровые растворы условно делятся на четыре группы:
1) интенсивно вспенивающиеся;
2) умеренно вспенивающиеся;

3) газированные со стойкой фазой газа;

4) газированные с нестойкой фазой газа.

Для каждого раствора рекомендуется определенное значение вакуума при обработке в дегазаторе:
Группа раствора......................................... 1 2 3 4
Вакуум, МПа.............................................. 0,075-0,08 0,05-0,07 0,03-0,07 0,03-0,05
Значение вакуума в дегазаторе регулируют путем изменения степени сжатия пружины мембраны золотника. После того как установлено необходимое разрежение в камере дегазатора, необходимо отрегулировать его пропускную способность при помощи ограничительных болтов, позволяющих изменить ход приемных клапанов. При ввинчивании болтов внутрь клапанных коробок снижается пропускная способность дегазатора. Желательно, чтобы пропускная способность дегазатора была больше объема циркулирующего раствора. В этом случае часть дегазированной жидкости перетекает из выкидного отсека емкости в приемный и над всасывающими патрубками приемных клапанов автоматически устанавливается уровень жидкости.
По мере увеличения вакуума пропускная способность дегазатора уменьшается, поэтому не следует без необходимости устанавливать в камерах дегазатора высокую степень разрежения.
Повышения эффекта дегазации можно достигнуть только путем повышения значения вакуума в дегазационных камерах.
В связи с тем, что сборник жидкости дегазатора имеет постоянный объем, пропускную способность дегазатора можно регулировать только при изменении времени полного цикла дегазации (длительность полного цикла дегазации слагается из времени откачки из дегазационной камеры и времени всасывания жидкости). Пропускную способность дегазатора можно изменять двумя способами: сжатием пружины золотника (изменением вакуума в камере); открытием приемного клапана (изменением пропускной способности дегазационной камеры). Оба способа имеют преимущества и недостатки, поэтому выбор способа определяется трудностью дегазации бурового раствора.
Основным контролируемым параметром работы дегазатора является значение вакуума в камерах. Причиной ее изменения могут быть различного рода неполадки в системе дегазации



















3. Регулирование содержания и состава твердой фазы в буровом растворе

Твердые частицы в буровом растворе, как правило, необходимы, но они существенно затрудняют процесс бурения скважины. Они приводят к повышению его вязкости, увеличению гидравлических сопротивлений, усиленному износу деталей гидравлического оборудования, в первую очередь буровых насосов, элементов подземного оборудования, бурильных труб и циркуляционной системы, а также к возрастанию расхода топлива и (или) электроэнергии.
Когда в неутяжеленном растворе в результате его зашламления накапливается большое количество твердой фазы и удалить ее очистными устройствами трудно, буровой раствор просто заменяют свежеприготовленным.
Основная доля стоимости утяжеленных растворов приходится на барит, поэтому даже в тех случаях, когда содержание твердых частиц настолько велико, что раствор становится практически не прокачиваемым, его стараются не заменять, а отрегулировать в нем содержание и состав твердой фазы.
Если не противодействовать загрязнению бурового раствора твердыми частицами, то затраты на его обслуживание резко возрастут.
Наиболее заметный прогресс в регулировании содержания и состава твердой фазы в буровых растворах был достигнут, начиная с 50-х годов прошлого века, в результате применения центрифуг-отстойников. Это оборудование, претерпев значительную модернизацию, используется до настоящего времени. Основным современным аппаратом для выполнения этой технологической операции является центробежный сепаратор, представляющий собой разновидность центрифуг.
Центробежный сепаратор для буровых растворов (рис. 9)


Рисунок 9 - Центробежный сепаратор для буровых растворов
представляет собой перфорированный ротор 2, вращающийся внутри корпуса 1. Буровой раствор, поступая в корпус 1, попадает в центробежное поле ротора. Поток раствора приобретает поступательно-вращательное движение, в результате чего происходит разделение твердой фазы по массе. Наиболее массивные частицы раствора (барит, крупный шлам) оттесняются к стенкам корпуса сепаратора и перемещаются периферийной частью потока к сливному отверстию 4 корпуса. Жидкая фаза бурового раствора с тонкодисперсными частицами движется внутри ротора и выходит из аппарата через полый вал 3 ротора.
Разделив буровой раствор на облегченный и утяжеленную пульпу, оператор получает возможность регулировать их возврат в циркуляционную систему и подачу в запасные емкости, таким образом осуществляя первичное регулирование содержания и состава твердой фазы в буровом растворе. Окончательное доведение раствора до кондиции производят путем добавления в него (при необходимости) свежих порций компонентов.
Поступающий через ввод 5 на обработку в центробежный сепаратор буровой раствор обычно разбавляют водой для того, чтобы уменьшить вязкость и таким образом улучшить условия разделения твердой фазы по массе.

С помощью агрегата можно выполнять следующие функции:
1) тонкую очистку раствора от шлама - для этого сепаратор устанавливают в качестве четвертой ступени очистки после илоотделителя; часть бурового раствора, очищенного на блоке гидроциклонов илоотделителя, подают в сепаратор и таким образом удаляют из раствора частицы шлама размером более 4 мкм;
2) регенерацию утяжелителя - в процессе циркуляции или спускоподъемных операций сепаратор включают в работу и из избыточной части раствора извлекают пульпу утяжелителя; эту пульпу затем собирают в запасную емкость и при необходимости добавляют в рабочий объем бурового раствора;
3) регулирование содержания и состава твердой фазы - это основная технологическая задача, для решения которой строго контролируются подача раствора и режим работы агрегата; утяжеленная пульпа, твердая фаза которой состоит в основном из барита, возвращается частично или полностью в циркуляционную систему, а облегченная часть раствора в случае его обогащения тонкодисперсными частицами шлама сбрасывается в отстойный амбар; эта часть потока частично используется для разбавления рабочего объема бурового раствора;
4) сгущение пульпы из песков и илов. Иногда сепаратор используют для дополнительного сгущения пульпы из песков и илов, собираемых из нижних насадок гидроциклонных шламоотделителей; это позволяет сократить потери бурового раствора при использовании многоступенчатой гидроциклонной очистки; дополнительно извлеченный из песков и илов буровой раствор вместе с дорогостоящими реагентами возвращается в циркуляционную систему, а шлам сбрасывается в отвал.
Современная центрифуга при нормальном режиме работы способна обрабатывать до 1,5 л/с бурового раствора. На форсированном режиме допускается подача до 2 л/с; рабочий диапазон пропускной способности 45 - 75 л/мин.
Центрифуга - высокоэффективный аппарат для разделения суспензий, но и она имеет недостатки: конструкция ее сложна и требуется высокая квалификация обслуживающего персонала. Поэтому наиболее целесообразно аппараты использовать кратковременно. Наличие многочисленных вращающихся деталей, абразивная рабочая среда, высокие частоты вращения (1800 - 2300 об/мин), сальниковые уплотнения, винтовые насосы - все это требует тщательного ухода и высокой культуры эксплуатации.

Центрифуга в 10-11 раз дороже песко- и илоотделителей.

При обработке утяжеленного бурового раствора перед подачей в центрифугу его необходимо разбавлять водой. В противном случае потери утяжелителя будут существенными. Современные условия эксплуатации центрифуг таковы, что каждые один-два объема бурового раствора надо разбавлять одним объемом воды. Поэтому, во-первых, облегченную часть раствора вместе с реагентами приходится выбрасывать, а во-вторых, возникает необходимость в специальной системе оборотного водоснабжения и захоронении (или нейтрализации) сбрасываемого осветленного продукта. Все это свидетельствует о необходимости строгого анализа границ определенных геолого-технических условиях применимости центрифуги бурения скважин.

В практике бурения скважин для регулирования содержания и состава твердой фазы широко используются шнековые центрифуги (рис. 10).

Шнек вращается с определенной скоростью и транспортирует скапливающуюся у стенок корпуса сгущенную пульпу к разгрузочному устройству. Такой тип центрифуги позволяет почти полностью отделять от барита жидкую фазу и поэтому чаще всего используется для регенерации утяжелителя из бурового раствора. Режим работы этих центрифуг регулируют подачей раствора на обработку, степенью его разбавления водой, частотой вращения ротора.
Однако в связи с высокой стоимостью и сложностью технического обслуживания центрифугу не всегда целесообразно применять. Выгодней и проще использовать гидроциклонные аппараты. Сущность работы такого аппарата в режиме регенерации утяжелителя состоит в том, что разбавленный водой буровой раствор поступает по тангенциальному вводу в гидроциклон, в центробежном поле которого происходит отделение барита от раствора. Баритовая пульпа возвращается в буровой раствор или сливается в специальную емкость, а облегченная водоглинистая смесь через верхний слив гидроциклона сбрасывается в отстойник. Вода в отстойнике отделяется от глинистых частиц и может повторно использоваться для разбавления новых порций подаваемого на обработку бурового раствора.
Такие аппараты, обычно называемые гидроциклонными глиноотделителями, достаточно эффективны. Они способны регенерировать до 80 - 90 % барита при степени разбавления бурового раствора, равной четырем. Значительное разбавление раствора водой (соотношение воды: раствор составляет 4:1) является главным недостатком гидроциклонных глиноотделителей. Однако они могут использоваться с хорошей экономической эффективностью.

Рисунок 10 - Схема шнековой центрифуги для регенерации утяжелителя:

I - подача раствора; II - выход утяжеленной пульпы; III - слив раствора

В последние годы замечается тенденция к использованию для регу лирования содержания и состава твердой фазы буровых растворов специальных реагентов - флокулянтов в сочетании с известными и широко применяемыми средствами очистки: отстойниками, виброситами и гидроциклонными шламоотделителями. Принцип действия флокулянтов основан на том, что частицы твердой фазы под действием этого реагента агрегируются в так называемые флокулятны и превращаются в сравнительно большие по размеру хлопья, которые можно удалить с помощью обычных средств очистки раствора от шлама.
Флокулянты бывают общего и селективного действия. Первые флокулируют твердую фазу растворов независимо от ее природы и дисперсного состава, вторые агрегируют лишь частицы определенного материала и дисперсного состава.


Коментарии: Модернизация дегазатора и струйного насоса буровой установки позволит увеличить КПД и производительность работы оборудования, а также улучшить качество промываемой жидкости, сократить расходы на потребление электроэнергии, топлива, транспортные затраты.
В проекте предлагается замена вакуумного дегазатора «Каскад - 40» на аналогичное оборудование BD «Highlight» американского производства. Предлагаемый дегазатор BD «Highlight» является оборудованием нового поколения, позволяющий тщательно выводить газы из эмульсии бурового раствора. Он может быть использован в процессе проведения буровых работ или при неустойчивых режимах проходки. Также дегазатор оснащен циркуляционным вакуумным насосом, поддерживающим постоянную температуру при работе с легковоспламеняющимися и взрывоопасными газами, позволяющий возвращать во вспомогательный резервуар газ, что препятствует образованию горючих смесей.
Дополнительной экономией средств является то, что дегазатор BD «Highlight» потребляет смесь воды с азотом вместо дизельного топлива.


Размер файла: Мбайт
Фаил: Упакованные файлы (.rar)

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, предложений нет. Рекомендуем воспользваться поиском по базе.

Сдай работу играючи!

Рекомендуем вам также биржу исполнителей. Здесь выполнят вашу работу без посредников.
Рассчитайте предварительную цену за свой заказ.



Страницу Назад

  Cодержание / Нефтяная промышленность / Модернизация вакуумного дегазатора и струйного насоса буровой установки. Замена вакуумного дегазатора «Каскад - 40» на аналогичное оборудование BD «Highlight» американского производства-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!