Все разделы / Общая теория связи /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (100 руб.)

Лабораторная работа №4. По дисциплине:"Общая теория связи". Вариант №12

ID: 180373
Дата закачки: 25 Апреля 2017

Автор: Студент
Продавец: Колька
    Посмотреть другие работы этого продавца

Тип работы: Работа Лабораторная
Форматы файлов: Microsoft Office
Сдано в учебном заведении: СибГУТИ

Описание:
Исследование обнаруживающей и исправляющей способности циклических кодов

Цель работы: Ознакомление с методами построения корректирующих кодов. Экспериментальное исследование обнаруживающей и исправляющей способности циклических кодов.

Описание лабораторной установки

1. Лабораторная установка выполнена в виде программно управляемой модели и выполняется на ЭВМ в штатном составе (процессор, дисковод,
дисплей, принтер).
2. Загрузка ЭВМ производится с дискеты (программа Lab4.exe ) или винчестера. В дальнейшем необходимо руководствоваться указанием с дисплея ЭВМ и лабораторным заданием.

3. Краткое описание структурных схем декодеров исследуемых циклических кодов, программно реализованных на языке Turbo Pascal, приведено ниже.
Декодер Меггитта представляет собой синдромный декодер, исправляющий одиночные ошибки, в памяти которого с целью упрощения хранится только один синдром ошибки S15(x) = x3+1 (соответствует последовательности ошибки e15(x) = x14), синдромы остальных одиночных ошибок циклически сдвигаются в регистре синдрома до совпадения с S15(x); число циклов сдвига i (i= 0, 1, 2, ..., 14) плюс единица равно номеру искаженного кодового элемента. Структурная схема декодера Меггита показана на рисунке 14.1.



Декодер работает следующим образом. Кодовое слово (с ошибками или без них) в виде последовательности из 15 двоичных символов поступает в буферный регистр и одновременно в регистр синдрома, где производится деление этого слова на производящий многочлен кода g(x) = x4 +x+1, в результате чего вычисляется синдром ошибки Sj(x): S0j ,S1j , S2j , S3j  символы синдрома. Ошибка обнаруживается, если хотя бы один символ синдрома не равен нулю.
Исправление ошибок производится в следующих 15 циклах. Если
Sj(x) = S15(x), то ошибка в первом символе кодового слова, который находится в 15-ой ячейке буферного регистра. Тогда в первом цикле схема {И} выдаёт единицу и в сумматоре по модулю 2 на выходе буферного регистра корректируется первый символ кодового слова. Если ошибка в другом символе, то производится циклический сдвиг синдрома Sj(x) в регистре синдрома по цепи обратной связи с учетом того, что вход декодера на циклах исправления ошибок отключен. В каждом i-ом цикле проверяется равенство Sj+i (x) = S15(x) и в благоприятном случае на выходе схемы {И} появляется импульс коррекции ошибки, инвертирующий символ на выходе буферного регистра.
Структурная схема декодера Касами-Рудольфа приведена на Рис. 14.2. В декодере используется не оптимальный перестановочный метод декодирования, в котором с целью упрощения процедуры поиска ошибки используются циклические сдвиги синдромов ошибок и их сравнение с “покрывающими” синдромами (алгоритм Касами-Рудольфа).
Для кода Голея (23,12): g(x) = x11 +x9 +x7 + x6 +x5 +x+1 множество ошибок, вес (кратность) которых не превышает трёх, покрывается тремя последовательностями ошибок e1(x) = 0 , e17(x) = x16 , e18(x) = x17 , имеющих синдромы:

S1(x) = 0;
S17(x) = x8 + x7 + x4 + x3 + x + 1;
S18(x) = x9 + x8 + x5 + x4 + x2 + x.

Декодер отслеживает синдром ошибок, отличающийся от S1(x) не более, чем в трёх позициях, а также синдромы ошибок, отличающиеся от S17(x) и S18(x) не более, чем в двух позициях.

Декодирование производится в течение двух циклов. В первом цикле в течение 23 тактов производится запись принятого кодового слова в буферный регистр (п1=0) и вычисление синдрома ошибки в синдромном регистре (п2=0). Во втором цикле (п1=1) из 23 тактов производится поиск и исправление ошибок путем циклического сдвига синдрома ошибки и его сравнения с покрывающими синдромами в анализаторе синдрома. Одновременно циклически сдвигается кодовое слово в буферном регистре.
Позиции ошибок обнаруживаются при удовлетворении какого-либо из неравенств в анализаторе синдрома; на выходе соответствующей схемы анализатора появляется сигнал, по которому выход синдромного регистра подключается (п2=1) к сумматору в цепи циклического сдвига буферного регистра для исправления ошибок. Если срабатывает вторая или третья схемы анализатора, то дополнительно исправляются ошибки в 17-ой или 18-ой ячейках буферного регистра в соответствии с номером покрывающего синдрома; одновременно производится стирание этого синдрома в синдромном регистре. После 23-го цикла производится проверка состояния синдромного регистра и, если остаток не превышает двух единиц, его содержимое используется для коррекции состояний первых 11 ячеек буферного регистра.
На этом декодирование заканчивается и на выход выдаются информационные символы, расположенные в первых 11 ячейках буферного регистра; одновременно на вход может подаваться новое кодовое слово (п1=0).

 Лабораторное задание
 
 1. Ознакомиться с рабочим местом и особенностями экспериментального исследования корректирующих кодов на ЭВМ.

2. Определить экспериментально кодовое расстояние исследуемых кодов и способность кодов с различной избыточностью (для заданных производящих полиномов g1(х) и g2(х)) обнаруживать и исправлять ошибки:
код 1 – (n, k) = (23, 12); g1(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1;
код 2 – (n, k) = (15, 11); g2(x) = x4 + x + 1.
3. Исследовать и сравнить результаты декодирования кодовых слов с ошибками различной кратности.


Комментарии: Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Общая теория связи
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: **.**.2017
Рецензия:Уважаемый Студент,

Резван Иван Иванович

Размер файла: 536,1 Кбайт
Фаил: Упакованные файлы (.rar)

-------------------
Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные!
Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, точных предложений нет. Рекомендуем воспользваться поиском по базе.


Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Общая теория связи / Лабораторная работа №4. По дисциплине:"Общая теория связи". Вариант №12

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
Z-PAYMENT VISA Card MasterCard Yandex деньги WebMoney Сбербанк или любой другой банк SMS оплата ПРИВАТ 24 qiwi PayPal

И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках

Здесь находится аттестат нашего WM идентификатора 782443000980
Проверить аттестат


Сайт помощи студентам, без посредников!