Все разделы / Вычислительная математика /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (79 руб.)

Вычислительная математика. Лабораторные работы №№1-5. Вариант №9

ID: 183230
Дата закачки: 19 Сентября 2017

Автор: nik200511
Продавец: nik200511
    Посмотреть другие работы этого продавца

Тип работы: Работа Лабораторная
Форматы файлов: Исполняемые фалы (EXE), Microsoft Word, TurboPascal
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
Лабораторная работа №1.

Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,¼29).
Для построения таблицы взять функцию N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Пример расчета шага таблицы: Пусть . Полная погрешность интерполяции R = Rусеч + Rокруг, где Rусеч – погрешность формулы линейной интерполяции, Rокруг – погрешность, возникающая из-за подстановки в формулу линейной интерполяции приближенных значений функции
Известно, что погрешность формулы линейной интерполяции оценивается по следующему неравенству:
Rусеч £ , где . По условию задачи , следовательно, Rусеч £ . По условию табличные значения функции округлены до 4-х знаков. Следовательно, абсолютная погрешность округления табличных значений D (f) = 0.5× 10-5. Тогда, при подстановке этих приближенных значений в формулу линейной интерполяции возникает погрешность:
Rокруг = (1 – q)× D (f) + q× D (f) = D (f) = 0.5× 10-5. По условию, общая погрешность R £ 0.0001. Получаем,

Лабораторная работа №2.

Привести систему к виду, подходящему для метода простой итерации.
Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Точность достигнута, если (k – номер итерации, k = 0,1,… ).
Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
N – последняя цифра пароля = 9.
Решение:
Программа
program Linear_equations;

Лабораторная работа № 3

Найти аналитически интервалы изоляции действительных корней уравнения.
Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001.
Считается, что требуемая точность достигнута, если выполняется условие ,(e – заданная точность), при этом
Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 9:
Решение:
Найдем интервалы изоляции действительных корней уравнения.. .
Программа
program Lab3;
Результаты работы

Лабораторная работа № 4

Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: .
Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1… 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля =9. C=3. Тогда, точное значение производной .
Решение:
Программа
program Lab4;
Результаты работы

Лабораторная работа № 5

Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001.
Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,… ), при этом, ,
N – последняя цифра пароля = 9.
Программа
program Lab5;
uses Crt;
const N=;
{ Функция, вычисляющая f(x) }
begin

Комментарии: Все работы зачтены

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа
Оценка:Зачет
Дата оценки: 04.09.2013
Рецензия:
замечаний нет.
Галкина Марина Юрьевна

Размер файла: 271,2 Кбайт
Фаил: Упакованные файлы (.rar)

-------------------
Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные!
Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Вычислительная математика / Вычислительная математика. Лабораторные работы №№1-5. Вариант №9

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
Z-PAYMENT VISA Card MasterCard Yandex деньги WebMoney Сбербанк или любой другой банк SMS оплата ПРИВАТ 24 qiwi PayPal

И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках

Здесь находится аттестат нашего WM идентификатора 782443000980
Проверить аттестат


Сайт помощи студентам, без посредников!