Все разделы / Дискретная математика /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (150 руб.)

Дискретная математика. Контрольная работа.

Дата закачки: 30 Ноября 2011

Автор: novosibguti
Продавец: novosibguti
    Посмотреть другие работы этого продавца

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
№1 
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (AB) \\ (AC) = (AB) \\C б) (AB)C=(AC)(BC) .
№2 
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1  AB, P2  B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)}; P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
№3 
Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P  R2, P = {(x,y) | x•y > 1}.
№4 
Доказать утверждение методом математической индукции:
(n3 + 11•n) кратно 6 для всех целых n  0.
№5 
Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
№6 
Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
№7 
Найти коэффициенты при a=x3•y2•z2, b=x2•y2•z2, c=x4•z4 в разложении (2•x+3•y+5•z2)6.
№8 
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 + 2•an = 0• и начальным условиям a1=3, a2=7.
№9
Орграф задан матрицей смежности. Необходимо:  
а) нарисовать граф;  
б) выделить компоненты сильной связности;  
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
№10 
Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;  
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.


Коментарии: 2011год, зачет.

Размер файла: 126,6 Кбайт
Фаил: Упакованные файлы (.rar)

 Скачать Скачать

 Добавить в корзину Добавить в корзину

    Скачано: 8         Коментариев: 0


Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !




Страницу Назад

  Cодержание / Дискретная математика / Дискретная математика. Контрольная работа.

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!