Все разделы / Информационные технологии и системы /


Страницу Назад
Поискать другие аналоги этой работы

За деньгиЗа деньги (100 руб.)

Теория информации. Контрольная работа. 4-й вариант

Дата закачки: 12 Февраля 2013

Автор: Андрей
Продавец: andreyka1486
    Посмотреть другие работы этого продавца

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Office
Сдано в учебном заведении: СибГУТИ

Описание:
Цель занятия. Изучение практических приложений основных результатов теории информации для сравнительной оценки информационных характеристик дискретных и непрерывных источников сообщений и каналов связи
1. Определить энтропию и избыточность двоичного источника с независимым выбором элементов, если задана вероятность первого сообщения P(x1). P(x2)=1-P(x1).
Для разных вариантов P(x1)=1/(1+N), где N –номер варианта.
Определить энтропию и избыточность источника с независимым выбором элементов (букв), вероятности выбора которых приведены в таблице вариантов.
Таблица вариантов к задаче 2.
№№ вар. P(x1) P(x2) P(x3) P(x4) P(x5) P(x6) P(x7) P(x8)
1-4 0,3 0,2 0,2 0,1 0,05 0,05 0,05 0,05
Закодировать сообщение источника предыдущей задачи для передачи информации по каналу связи:
o равномерным двоичным кодом;
o оптимальным неравномерным двоичным кодом.
Сравните среднее число элементов кода, приходящегося на одну букву, для обоих способов кодирования и сделайте обобщающие выводы.
4.В системе связи используется двоичный источник с зависимыми элементами (буквами) x1, x2, для которых заданы вероятности переходов.
Требуется:
1. Изобразить на чертеже диаграмму состояний и переходов источника.
2. Вычислить вероятности P(x1) и P(x2).
3. Определить энтропию и избыточность источника с найденными вероятностями P(x1) и P(x2) в предположении отсутствия корреляционных связей.
4. Определить энтропию и избыточность источника с учётом корреляционных связей.
5. Сравните результаты вычислений по пунктам 3 и 4 сделайте вывод о влиянии корреляции на энтропию и избыточности источника.
Для разных вариантов P(x1|x2)=1/(1+0,1N), P(x2|x1)=(N+4)/40, где N – номер варианта.
5.Закодировать сообщения источника предыдущей задачи сообщений по каналу связи:
o равномерным двоичным кодом;
o оптимальным кодом с учётом корреляционных связей, укрупняя алфавит, путём объединения букв в кодовые слова по две буквы.
Сравнить среднее число элементов кода, приходящееся на одну букву, для этих двух случаев.
6.Решить задачу 5, укрупнив алфавит источника путём объединения букв в кодовые слова по три буквы.
7. Вычислить пропускную способность двоичного канала связи, если информация передаётся со скоростью
V=1200 Бод (для вариантов 1-10);
а вероятность искажения элементарной посылки равна p=0,1/N, где N – номер варианта.
Определить также производительность данного источника.
8. Определить энтропию и производительность источника непрерывных сообщений, если плотность вероятности сигнала описывается равномерным законом распределения, а сигнал ограничен в объёме от -10 до +N милливольт, где N – номер варианта.
Эффективная ширина спектра Δf=1000+10NГц.
Сигнал ограничен в объеме от -10 до +4 мВ
9. Определить энтропию источника непрерывных сообщений с гауссовским законом распределения напряжений, если математическое ожидание равно 10N вольт, а дисперсия σ2 = 0.01N Вт, где N – номер варианта.
10. Определить, какую мощность должен иметь сигнал с гауссовским законом распределения, если известна полоса пропускная канала связи
Δfэфф=1000+10N Гц
и спектральная плотность шума
N0=10+N мкВт/Гц,
где N – номер варианта задачи.
11. Рассчитать и построить зависимость пропускной способности непрерывного канал связи от эффективной полосы пропускания канала при мощности сигнала
Pc=10+N мВт,
где N – номер варианта задачи.
Спектральная плотность гауссовского шума в канале связи
N0=1+N мкВт/Гц.


Коментарии: Работа сдана в 2013 году. Вариант 04. СибГУТИ

Размер файла: 28,1 Кбайт
Фаил: Упакованные файлы (.rar)

-------------------
Обратите внимание, что преподователи часто переставляют варианты и меняют исходные данные!
Если вы хотите что бы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращем деньги если вариант окажется не тот.
-------------------

 Скачать Скачать

 Добавить в корзину Добавить в корзину

        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, предложений нет. Рекомендуем воспользваться поиском по базе.




Страницу Назад

  Cодержание / Информационные технологии и системы / Теория информации. Контрольная работа. 4-й вариант

Вход в аккаунт:

Войти

Перейти в режим шифрования SSL

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт




Сайт помощи студентам, без посредников!