Термодинамика и теплопередача ТюмГНГУ Техническая термодинамика Задача 4 Вариант 58

Цена:
150 руб.

Состав работы

material.view.file_icon Задача 1.4 Вариант 58.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Определить конечное состояние газа, расширяющегося политропно от начального состояния с параметрами р1, t1 изменение внутренней энергии, количество подведенной теплоты, полученную работу, если задан показатель политропы (n), конечное давление p2. Показать процесс в pυ- и Ts-координатах.
Буровой насос НБ-475, насос буровой НБ-475 (вид2)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
Буровой насос НБ-475, насос буровой НБ-475 (вид2)-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
500 руб.
Буровой насос НБ-475, насос буровой НБ-475 (вид2)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
Роторная пила горячей резки ПГМ-1600
Чертеж роторной пилы горячей резки ПГМ-1600. Архив содержит один файл компасс
User GoodOK-1 : 23 июня 2015
150 руб.
Роторная пила горячей резки ПГМ-1600
Теория электрических цепей (часть 1). Зачет. Билет № 2
Теория электрических цепей (часть 1). Зачет. Билет № 2 по курсу ТЭЦ 1. Преобразование Лапласа и его свойства. Применение преобразования Лапласа для расчета переходных процессов. 2. Задача Дано: Схема и график входного сигнала . Ом; В; Ом; мс; мГн; мс. Найти переходную характеристику . Записать в общем виде . 3. Задача Дано: Цепь на операционном усилителе 1. Найти выражение , рассматривая цепь как схему с обратной связью. 2. Записать выражение АЧХ и кач
User SibGUTI2 : 18 июня 2019
150 руб.
Теория электрических цепей (часть 1). Зачет. Билет № 2
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
Вариант №3 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2)) 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
User xtrail : 10 февраля 2014
600 руб.
up Наверх