Страницу Назад
Поискать другие аналоги этой работы
5 Скалярная проекция гиперкомплексных чиселID: 102710Дата закачки: 09 Августа 2013 Продавец: Qiwir (Напишите, если есть вопросы) Посмотреть другие работы этого продавца Тип работы: Работа Форматы файлов: Microsoft Word Описание: При первой же попытке рассмотрения гиперкомплексных чисел в качестве основания для соответствующей геометрии возникает желание найти в гиперкомплексных числах аналоги геометрических понятий. И одной из первых трудностей становится поиск аналога скалярного произведения. Если в геометрии есть проекция отрезка, в векторной алгебре есть скалярное произведение, то чему же это понятие соответствует в гиперкомплексных числах? Стремление к общности определения наталкивается на ряд понятий, которые оказались введены в классическом подходе в виде, как говорят студенты, “подгонки”. И скалярное произведение, и сопряжение, как оказалось, были введены в математику аксиоматически и теоремы, использоваашие их определение, естественным образом подтвердили их свойства, вытекающие однозначным образом из их определения. Классическая форма (билинейная форма) была использована, например, в теореме Гурвица и тем самым было введено ограничение на набор рассматриваемых алгебр. Дальнейшие попытки развития теории гиперкомплексных алгебр пошли не по пути рассмотрения свойств алгебр, образующихся путем удвоения и использования этих свойств, а по пути рассмотрения алгебр над полями со все более глубокой их структуризацией. Мне хотелось бы до конца выяснить вопрос - что является аналогом скалярного произведения в гиперкомплексных числах и, сравнив два подхода, выяснить, где находятся белые пятна классического подхода. И скромно предположить направление исследований, которое может дать, возможно, полезные в технике и физике результаты. Скалярное же произведение в классической геометрии, определяемое в виде билинейной формы, к гиперкомплексным числам не подходит в общем случае, поскольку автоматически означает и требование билинейности квадрата модуля. А таким требованиям отвечает меньшая часть алгебр. Остальные имеют определение 4-й степени модуля в виде 4-х линейной формы, или, возможно, еще более высокого порядка. Размер файла: 45,3 Кбайт Фаил: ![]()
Коментариев: 0 |
||||
Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них. Опять не то? Мы можем помочь сделать!
К сожалению, точных предложений нет. Рекомендуем воспользоваться поиском по базе. |
||||
Не можешь найти то что нужно? Мы можем помочь сделать! От 350 руб. за реферат, низкие цены. Спеши, предложение ограничено ! |
Вход в аккаунт:
Страницу Назад
Cодержание / Математика / Скалярная проекция гиперкомплексных чисел