Правильные и полуправильные многогранники
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Правильным многогранником называется выпуклый многогранник, грани которого – равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер.
Всего в природе существует пять правильных многогранников. По сравнению с количеством правильных многоугольников это – очень мало: для каждого целого n>2 существует один правильный n-угольник, т.е. правильных многоугольников – бесконечно много. Правильные многогранники имеют названия по числу граней: тетраэдр (4 грани): гексаэдр (6 граней), октаэдр (8 граней), додекаэдр (12 граней) и икосаэдр (20 граней). По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. – указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра – правильные треугольники, куба - квадраты, додекаэдра – правильные пятиугольники.
Если обозначить количество углов у одной грани правильного многогранника за q, а количество граней, сходящихся в одной вершине – за p, можно получить точные характеристики каждого правильного многогранника. Вот они (первое число – q, второе – p): (3;3), (3;4), (4;3), (3;5), (5;3). При этом у куба и октаэдра, а также у икосаэдра и додекаэдра, числа p и q оказываются как бы переставленными. Эти многогранники называют двойственными. Тетраэдр считается двойственным сам себе. У двойственных многогранников количество ребер одинаковое.
Правильные многогранники симметричны. Это означает, что для любого произвольно выбранного ребра AB и примыкающей к нему грани F можно так повернуть многогранник, что ребро AB перейдет в любой отличное от него ребро CD, точка A – в любой его конец (C или D), а грань F совпадет с одной из двух примыкающих к нему граней. Таких возможных поворотов – самосовмещений всего существует 4P, где P – число ребер многогранника. При этом половина из них – повороты вокруг воображаемых осей, соединяющих центр многогранника с его вершинами, серединами ребер и граней на углы, кратные соответственно 2p/q, p и 2p/p, а другая половина – симметрии относительно плоскостей и "зеркальные повороты". Указанное "свойство максимальной симметричности" иногда принимают за определение правильного многогранника. Но человеку, далекому от математики, трудно представить себе геометрическое тело с таким определением.
Всего в природе существует пять правильных многогранников. По сравнению с количеством правильных многоугольников это – очень мало: для каждого целого n>2 существует один правильный n-угольник, т.е. правильных многоугольников – бесконечно много. Правильные многогранники имеют названия по числу граней: тетраэдр (4 грани): гексаэдр (6 граней), октаэдр (8 граней), додекаэдр (12 граней) и икосаэдр (20 граней). По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. – указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра – правильные треугольники, куба - квадраты, додекаэдра – правильные пятиугольники.
Если обозначить количество углов у одной грани правильного многогранника за q, а количество граней, сходящихся в одной вершине – за p, можно получить точные характеристики каждого правильного многогранника. Вот они (первое число – q, второе – p): (3;3), (3;4), (4;3), (3;5), (5;3). При этом у куба и октаэдра, а также у икосаэдра и додекаэдра, числа p и q оказываются как бы переставленными. Эти многогранники называют двойственными. Тетраэдр считается двойственным сам себе. У двойственных многогранников количество ребер одинаковое.
Правильные многогранники симметричны. Это означает, что для любого произвольно выбранного ребра AB и примыкающей к нему грани F можно так повернуть многогранник, что ребро AB перейдет в любой отличное от него ребро CD, точка A – в любой его конец (C или D), а грань F совпадет с одной из двух примыкающих к нему граней. Таких возможных поворотов – самосовмещений всего существует 4P, где P – число ребер многогранника. При этом половина из них – повороты вокруг воображаемых осей, соединяющих центр многогранника с его вершинами, серединами ребер и граней на углы, кратные соответственно 2p/q, p и 2p/p, а другая половина – симметрии относительно плоскостей и "зеркальные повороты". Указанное "свойство максимальной симметричности" иногда принимают за определение правильного многогранника. Но человеку, далекому от математики, трудно представить себе геометрическое тело с таким определением.
Другие работы
Ролик направляющий МЧ00.80.00.00. Деталировка
bublegum
: 22 марта 2021
Ролик является частью устройства для перемещения заготовок в прокатных станах.
Корпус поз. 1 крепят к раме устройства двумя болтами (см. вид А). Два отверстия в ушках крышки поз. 3 и отверстия во фланце корпуса предназначены для деталей, соединяющих корпус с другими частями устройства. Вал поз. 4 опирается на два подшипника качения — шариковый поз. 11 и роликовый поз. 12. Смещению подшипников в осевом направлении препятствуют дистанционные втулки поз. 2, 7, 8 и крышки поз. 3, 5. В каждой крышке
600 руб.
Контрольная работа по дисциплине: "Математический анализ"сем.2 Вариант№2
shpion1987
: 5 октября 2011
Вариант №2
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в
50 руб.
Лабораторные работы №№1,2,3 по дисциплине Схемотехника телекоммуникационных устройств. Вариант №06.
Pifpav8672
: 13 марта 2021
Лабораторная работа №1
По дисциплине: «Схемотехника телекоммуникационных устройств»
Цель работы:
Исследовать влияние параметров элементов схемы каскада с эмиттерной стабилизацией на его показатели (коэффициент усиления, частотные и переходные характеристики).
Лабораторная работа №2.
По дисциплине: «Схемотехника телекоммуникационных устройств».
Цель работы:
Исследовать влияние элементов схемы каскада широкополосного усиления на полевом транзисторе с общим истоком на его показатели (коэффициен
375 руб.
Отчет по практике на предприятии розничной торговли ООО "Заря"
Aronitue9
: 13 декабря 2014
Содержание:
Структура и организация предприятия.
Структура предприятия, его правовой статус, назначение отдельных подразделений.
Структура коммерческого аппарата, функции, должностные обязанности его работников.
Изучение ассортимента товаров, реализуемых торговым предприятием.
Изучение структуры ассортимента конкретной группы товаров.
Изучение товаров отдельных поставщиков по ассортименту и качеству.
Обоснование предложений о снятии с продажи товаров и совершенствование ассортимента.
Формировани
48 руб.