Применение операционного исчисления при решении дифференциальных уравнений
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Содержание
Введение. 3
§1. Оригиналы и изображения функций по Лапласу. 5
§2. Основные теоремы операционного исчисления. 8
2.1 Свертка оригиналов. 8
2.1 Свойство линейности. 9
2.2 Теорема подобия. 9
2.3 Теорема запаздывания. 10
2.4 Теорема смещения. 10
2.5 Теорема упреждения. 11
2.6 Умножение оригиналов. 11
2.7 Дифференцирование оригинала. 11
2.8 Дифференцирование изображения. 12
2.9 Интегрирование оригинала. 12
2.10 Интегрирование изображения. 13
§3. Изображения простейших функций. 13
§4. Отыскание оригинала по изображению.. 15
4.1 Разложение на простейшие дроби. 15
4.2. Первая теорема разложения. 16
§5 Решение задачи Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами. 18
Приложение. 24
Введение
Операционное исчисление в настоящее время стало одной из важнейших глав практического математического анализа. Операционный метод непосредственно используется при решении обыкновенных дифференциальных уравнений и систем таких уравнений; его можно использовать и при решении дифференциальных уравнений в частных производных.
Основателями символического (операционного) исчисления считают русских ученых М. Е. Ващенко – Захарченко и А. В. Летникова.
Операционное исчисление обратило на себя внимание после того, как английский инженер-электрик Хевисайд, используя символическое исчисление, получил ряд важных результатов. Но недоверие к символическому исчислению сохранялось до тех пор, пока Джорджи, Бромвич, Карсон, А. М. Эфрос, А. И. Лурье, В. А. Диткин и другие не установили связи операционного исчисления с интегральными преобразованиями.
Идея решения дифференциального уравнения операционным методом состоит в том, что от дифференциального уравнения относительно искомой функции-оригинала f(t) переходят к уравнению относительно другой функции F(p), называемой изображением f(t). Полученное (операционное) уравнение обычно уже алгебраическое (значит более простое по сравнению с исходным). Решая его относительно изображения F(p) и переходя затем к соответствующему оригиналу, находят искомое решение данного дифференциального уравнения.
Введение. 3
§1. Оригиналы и изображения функций по Лапласу. 5
§2. Основные теоремы операционного исчисления. 8
2.1 Свертка оригиналов. 8
2.1 Свойство линейности. 9
2.2 Теорема подобия. 9
2.3 Теорема запаздывания. 10
2.4 Теорема смещения. 10
2.5 Теорема упреждения. 11
2.6 Умножение оригиналов. 11
2.7 Дифференцирование оригинала. 11
2.8 Дифференцирование изображения. 12
2.9 Интегрирование оригинала. 12
2.10 Интегрирование изображения. 13
§3. Изображения простейших функций. 13
§4. Отыскание оригинала по изображению.. 15
4.1 Разложение на простейшие дроби. 15
4.2. Первая теорема разложения. 16
§5 Решение задачи Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами. 18
Приложение. 24
Введение
Операционное исчисление в настоящее время стало одной из важнейших глав практического математического анализа. Операционный метод непосредственно используется при решении обыкновенных дифференциальных уравнений и систем таких уравнений; его можно использовать и при решении дифференциальных уравнений в частных производных.
Основателями символического (операционного) исчисления считают русских ученых М. Е. Ващенко – Захарченко и А. В. Летникова.
Операционное исчисление обратило на себя внимание после того, как английский инженер-электрик Хевисайд, используя символическое исчисление, получил ряд важных результатов. Но недоверие к символическому исчислению сохранялось до тех пор, пока Джорджи, Бромвич, Карсон, А. М. Эфрос, А. И. Лурье, В. А. Диткин и другие не установили связи операционного исчисления с интегральными преобразованиями.
Идея решения дифференциального уравнения операционным методом состоит в том, что от дифференциального уравнения относительно искомой функции-оригинала f(t) переходят к уравнению относительно другой функции F(p), называемой изображением f(t). Полученное (операционное) уравнение обычно уже алгебраическое (значит более простое по сравнению с исходным). Решая его относительно изображения F(p) и переходя затем к соответствующему оригиналу, находят искомое решение данного дифференциального уравнения.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.