Метод половинного деления
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
ПлАН:
Введение
Метод половинного деления................................................................................................................................................... 4
Задача......................................................................................................................................................................................................... 4
Алгоритм................................................................................................................................................................................................... 6
Блок схема................................................................................................................................................................................................. 7
Заключение............................................................................................................................................................................................... 8
Литература................................................................................................................................................................................................. 9
Приложение
Введение
Целью данной курсовой работы является раскрытие содержания темы «Метод половинного деления» и дальнейшее ее закрепление путем выполнения лабораторной работы и практических заданий.
Одной из главных задач в обучении является развитие творческих и исследовательских способностей учащихся. На уроках информатики применение компьютеров позволяет учащимся заниматься исследовательской работой при решении задач из различных областей (например, физические, математические, экономические задачи). При этом они должны научиться четко формулировать задачу, решать ее и оценивать полученный результат.
Использование новых информационных технологий позволяет решать некоторые задачи нетрадиционными способами, а также решать прикладные задачи, которые ранее не могли рассматриваться в силу сложности математического аппарата. Так, в школьном курсе математики учащиеся рассматривают уравнения, которые имеют точные решения. Однако в реальной практике решение большинства уравнений не может быть записано в явном виде. Их решение находится только приближенными методами. Ранее способы решения таких уравнений рассматривались после изучения одного из алгоритмических языков. Во-первых, разрабатывали алгоритм метода решения (например, итерации, половинного деления). Во-вторых, составляли программу и использовали ее для получения решения и его исследования. Труднее было при изучении темы "Моделирование", когда рассматривали задачи оптимизации. Задачи должны были быть довольно простыми, допускающими только одну поисковую переменную.
В школьном курсе информатики метод половинного деления изучается в 11 классе на 42 уроке при изучении раздела «Компьютерное моделирование», закрепляется тема на 43 уроке в виде Лабораторной работы.
Метод половинного деления
Решение алгебраического уравнения. Для численного решения алгебраических уравнений существует множество способов. Среди самых известных можно назвать метод Ньютона, метод Хорд, и «всепобеждающий» метод Половинного Деления. Сразу оговоримся, что любой метод является приближенным, и по сути дела лишь уточняющим значение корня. Однако уточняющим до любой точности, заданной Нами.
Метод половинного деления или дихотомии (дихотомия - сопоставленность или противопоставленность двух частей целого) при нахождении корня уравнения f(x)=0 состоит в делении пополам отрезка [a; b], где находится корень. Затем анализируется изменение знака функции на половинных отрезках, и одна из границ отрезка [a; b] переносится в его середину. Переносится та граница, со стороны которой функция на половине отрезка знака не меняет. Далее процесс повторяется. Итерации прекращаются при выполнении одного из условий: либо длина интервала [a; b] становится меньше заданной погрешности нахождения корня ε, либо функция попадает в полосу шума ε1 – значение функции сравнимо с погрешностью расчетов.
Сначала поставим задачу. Дана монотонная, непрерывная функция f(x), которая содержит корень на отрезке [a,b], где b>a. Определить корень с точностью ε, если известно, что f(a)*f(b)<0
Дано уравнение вида:
f(x)=0; (1)
необходимо найти удовлетворяющие ему значения x.
Итак, приступим к решению. Первым делом, определимся, что значит f(x)=0. Посмотрите на рис.1. На нем изображен график некоей функции. В некоторых точках этот график пересекает ось абсцисс. Координаты x этих точек нам и нужно найти. Если вид уравнения простой или стандартный, например, квадратное уравнение или линейное, то применять численный метод здесь совершенно ни к чему. Но если уравнение у нас такое:
f(x)=x3-14x2+x+ex; (2)
то ни в каком учебнике вы не найдете метода аналитического решения этого кошмара. Здесь и приходит на помощь непобедимый численный метод. Метод половинного деления. Из самого названия метода можно предположить, что нам понадобится что-то делить пополам.
Ученикам метод половинного деления можно преподнести в виде решения задачи.
Задача
Идет осада неприятельской крепости. На некотором расстоянии от нее установили новую пушку. Под каким углом к горизонту надо стрелять из этой пушки, чтобы попасть в заданный участок крепостной стены.
Над моделью этой задачи физики изрядно поработали. Оно и понятно: ведь многие научные задачи, как и эта, возникали прежде всего в военном деле. И решение этих задач почти всегда считалось приоритетным.
Какие же факторы принять за существенные в этой задаче? Поскольку речь идет о средневековье, то скорость снаряда и дальность полета невелики. Значит можно считать несущественным, что Земля круглая (помните обсуждение в параграфе 27), и пренебречь сопротивлением воздуха. Остается единственный фактор – сила земного притяжения. В этом случае, как вы знаете из физики, горизонтальное (х) и вертикальное (у) смещение снаряда за время t описывается формулами
Введение
Метод половинного деления................................................................................................................................................... 4
Задача......................................................................................................................................................................................................... 4
Алгоритм................................................................................................................................................................................................... 6
Блок схема................................................................................................................................................................................................. 7
Заключение............................................................................................................................................................................................... 8
Литература................................................................................................................................................................................................. 9
Приложение
Введение
Целью данной курсовой работы является раскрытие содержания темы «Метод половинного деления» и дальнейшее ее закрепление путем выполнения лабораторной работы и практических заданий.
Одной из главных задач в обучении является развитие творческих и исследовательских способностей учащихся. На уроках информатики применение компьютеров позволяет учащимся заниматься исследовательской работой при решении задач из различных областей (например, физические, математические, экономические задачи). При этом они должны научиться четко формулировать задачу, решать ее и оценивать полученный результат.
Использование новых информационных технологий позволяет решать некоторые задачи нетрадиционными способами, а также решать прикладные задачи, которые ранее не могли рассматриваться в силу сложности математического аппарата. Так, в школьном курсе математики учащиеся рассматривают уравнения, которые имеют точные решения. Однако в реальной практике решение большинства уравнений не может быть записано в явном виде. Их решение находится только приближенными методами. Ранее способы решения таких уравнений рассматривались после изучения одного из алгоритмических языков. Во-первых, разрабатывали алгоритм метода решения (например, итерации, половинного деления). Во-вторых, составляли программу и использовали ее для получения решения и его исследования. Труднее было при изучении темы "Моделирование", когда рассматривали задачи оптимизации. Задачи должны были быть довольно простыми, допускающими только одну поисковую переменную.
В школьном курсе информатики метод половинного деления изучается в 11 классе на 42 уроке при изучении раздела «Компьютерное моделирование», закрепляется тема на 43 уроке в виде Лабораторной работы.
Метод половинного деления
Решение алгебраического уравнения. Для численного решения алгебраических уравнений существует множество способов. Среди самых известных можно назвать метод Ньютона, метод Хорд, и «всепобеждающий» метод Половинного Деления. Сразу оговоримся, что любой метод является приближенным, и по сути дела лишь уточняющим значение корня. Однако уточняющим до любой точности, заданной Нами.
Метод половинного деления или дихотомии (дихотомия - сопоставленность или противопоставленность двух частей целого) при нахождении корня уравнения f(x)=0 состоит в делении пополам отрезка [a; b], где находится корень. Затем анализируется изменение знака функции на половинных отрезках, и одна из границ отрезка [a; b] переносится в его середину. Переносится та граница, со стороны которой функция на половине отрезка знака не меняет. Далее процесс повторяется. Итерации прекращаются при выполнении одного из условий: либо длина интервала [a; b] становится меньше заданной погрешности нахождения корня ε, либо функция попадает в полосу шума ε1 – значение функции сравнимо с погрешностью расчетов.
Сначала поставим задачу. Дана монотонная, непрерывная функция f(x), которая содержит корень на отрезке [a,b], где b>a. Определить корень с точностью ε, если известно, что f(a)*f(b)<0
Дано уравнение вида:
f(x)=0; (1)
необходимо найти удовлетворяющие ему значения x.
Итак, приступим к решению. Первым делом, определимся, что значит f(x)=0. Посмотрите на рис.1. На нем изображен график некоей функции. В некоторых точках этот график пересекает ось абсцисс. Координаты x этих точек нам и нужно найти. Если вид уравнения простой или стандартный, например, квадратное уравнение или линейное, то применять численный метод здесь совершенно ни к чему. Но если уравнение у нас такое:
f(x)=x3-14x2+x+ex; (2)
то ни в каком учебнике вы не найдете метода аналитического решения этого кошмара. Здесь и приходит на помощь непобедимый численный метод. Метод половинного деления. Из самого названия метода можно предположить, что нам понадобится что-то делить пополам.
Ученикам метод половинного деления можно преподнести в виде решения задачи.
Задача
Идет осада неприятельской крепости. На некотором расстоянии от нее установили новую пушку. Под каким углом к горизонту надо стрелять из этой пушки, чтобы попасть в заданный участок крепостной стены.
Над моделью этой задачи физики изрядно поработали. Оно и понятно: ведь многие научные задачи, как и эта, возникали прежде всего в военном деле. И решение этих задач почти всегда считалось приоритетным.
Какие же факторы принять за существенные в этой задаче? Поскольку речь идет о средневековье, то скорость снаряда и дальность полета невелики. Значит можно считать несущественным, что Земля круглая (помните обсуждение в параграфе 27), и пренебречь сопротивлением воздуха. Остается единственный фактор – сила земного притяжения. В этом случае, как вы знаете из физики, горизонтальное (х) и вертикальное (у) смещение снаряда за время t описывается формулами
Похожие материалы
Отыскание корня уравнения методом половинного деления
Elfa254
: 8 октября 2013
1. Индивидуальное задание
2. Постановка задачи и формализация
3. Выбор, обоснование, краткое описание методов
3.1 Численное интегрирование
3.1.1 Постановка задачи
3.1.2 Выбор и описание метода
3.2 Отыскание корня уравнения
3.2.1 Постановка задачи
3.2.2 Выбор и описание метода (половинное деление)
4. Проверка условий сходимости методов
5. Тестирование программных модулей
5.1 Тестирование модуля численного интегрирования
5.1.1 Схема алгоритма тестирующей программы
5.1.2 Код тестирующей программы
5
10 руб.
Другие работы
МИП - ЛАБОРАТОРНАЯ РАБОТА №3. Методика «Тест решения»
aly1
: 19 декабря 2016
Цель: определения уровня устойчивости, концентрации и переключения внимания. При выполнении заданий этого теста также проявляют себя процессы памяти и интеллект.
Материал и оборудование: секундомер, бланк методики.
Процедура исследования: Испытуемым предлагается бланк, который содержит 40 задач на сложение или вычитание двухзначных чисел. Время на выполнение методики 10 минут.
Инструкция: «Вам предлагаются бланки, которые содержат 20 заданий. Каждое
задание включает пример на сложение и/или вы
550 руб.
Свободное программное обеспечение – преимущества для государства, бизнеса и общества
alfFRED
: 26 февраля 2014
Очевиден огромный интерес, проявляемый в настоящее время к так называемому Свободному Программному Обеспечению (Свободному ПО). Переход на Свободное ПО крупных компаний и государственных организаций связан далеко не только с «бесплатностью» таких программных продуктов. На самом деле, он означает качественное изменение самого характера внедрения такого рода ПО, обусловленное, в частности, вовлечением в этот процесс связанного с таким ПО профессионального сообщества. Это позволяет достичь еще боль
10 руб.
Уплотнительные и прокладочные материалы
Neyron
: 24 декабря 2008
В этой работе описаны основные прокладочные и уплотнительные материалы, а также герметики применяемые в автомобилестроении. Дано понятие о природе этих материалов, область наиболее целесообразного использования, а также приведены ГОСТы и нормативы, которым материалы должны соответствовать.
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ……………………………………………………………….……….3
1 УПЛОТНИТЕЛЬНЫЕ МАТЕРИАЛЫ……………………………….……..…4
1.1 Бумажные материалы………………………………………………..………..4
1.2 Асбестовые материалы……………………………………………...…………7
1.3 Пробковы
Расчёт гидравлической системы для подачи воды к пункту мойки машин
pulemytchitsa
: 7 января 2015
РВВДКУ, 2013 г, 20 стр.
Определение расходов воды по участкам. Определение скоростей движения воды на участках с одинаковым диаметром труб. Определение числа Рейнольдса по участкам трубопроводов с одинаковой скоростью движения. Определение коэффициента сопротивления трения. Определение потерь напора. Определение эффективного напора насоса, подбор насоса. Определение геометрической высоты всасывания. Определение эффективной мощности насоса и мощности его привода