Алгебра и геометрия. Экзамен БИЛЕТ № 9
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
Обозначим:
A = -21-11
B = 241-1
C = -93-17
3. Даны векторы
Найти .
a ̅+b ̅=(2-3; -3+1;1+2)=(-1;-2;3)
b ̅×c ̅=|(i&j&k@-3&1&2@1&2&3)|=i(3-4)-j(-9-2)+k(-6-1)=(-1;11;-7)
a ̅×b ̅=|(i&j&k@-1&-2&3@-1&11&-1)|
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
1) Уравнение плоскости.
2) Уравнение высоты пирамиды через вершину D(-1,-2,1
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет.
.
Дано уравнение кривой:
9x2 - 6y2 - 18x + 36y - 99 = 0
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.
2. Решить матричное уравнение , где
.
Обозначим:
A = -21-11
B = 241-1
C = -93-17
3. Даны векторы
Найти .
a ̅+b ̅=(2-3; -3+1;1+2)=(-1;-2;3)
b ̅×c ̅=|(i&j&k@-3&1&2@1&2&3)|=i(3-4)-j(-9-2)+k(-6-1)=(-1;11;-7)
a ̅×b ̅=|(i&j&k@-1&-2&3@-1&11&-1)|
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
1) Уравнение плоскости.
2) Уравнение высоты пирамиды через вершину D(-1,-2,1
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет.
.
Дано уравнение кривой:
9x2 - 6y2 - 18x + 36y - 99 = 0
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.
Дополнительная информация
2015, Зачет, Агульник Ольга Николаевна
Похожие материалы
СибГУТИ. Алгебра и геометрия. Зачет, экзамен. Билет №9
Дмитрий103
: 10 июня 2017
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
_____________
Алгебра и геометрия, экзамен, билет №9, семестр 1, зачет
Е2
: 9 июня 2018
Билет № 9
Задание 1. Кривые второго порядка. Канонические уравнения. Основные свойства.
Задание 2. Решить матричное уравнение , где
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
400 руб.
Алгебра и геометрия
blur
: 6 февраля 2023
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин п
50 руб.
«Алгебра и геометрия»
LenaSibsutis
: 4 февраля 2022
СибГУТИ. Дистанционное обучение
Контрольная работа на темы: матрицы, метод Крамера, метод Гаусса, составление уравнений по координатам вершин фигур
Контрольная из 5 заданий:
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравне
250 руб.
Алгебра и геометрия
s0nnk
: 28 января 2022
Контрольная работа №1
Вариант 1
По дисциплине «Алгебра и геометрия»
СибГУТИ 1 семестр
Работа выполнена на ОТЛИЧНО
ЗАДАНИЯ (скриншот задания прикрепила):
1.Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение
50 руб.
Алгебра и геометрия
gradus15
: 9 августа 2017
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы {-2,-3,-1} {3,-1,2} {-4,2,-3}
4. Даны координаты вершин треугольника
700 руб.
Алгебра и геометрия
кайлорен
: 9 февраля 2017
Вариант №2
2. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольни
185 руб.
Алгебра и геометрия
GKV1975
: 1 октября 2009
СибГУТИ. Алгебра и геометрия. Контрольная работа. 4 вариант.
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти: длину ребра А1А2; угол между ребрами А1А2 и А1А4; площадь грани А1А2А3; уравнение плоскости А1А2А3; объём пирамиды А1А2А3А4
Другие работы
Неопределенный интеграл
alfFRED
: 12 августа 2013
Первообразная и неопределенный интеграл
Рассмотрим задачу: Дана функция f(x);требуется найти такую функцию F(x),производная которой равна f(x),т.е. F′ (x)= f(x).
Определение:1.Функция F(x) называется первообразной от функции f(x) на отрезке [a,b], если во всех точках этого отрезка выполняется равенство F′ (x)= f(x).
Пример. Найти первообразную от функции f(x)=x2.Из определения первообразной следует, что функция F(x)=х3/3 является первообразной, так как (х3/3)′= x2 .
Легко видеть, что если для да
10 руб.
Расстановка технологического оборудования хозяйственного корпуса школы
ostah
: 20 октября 2013
«Технологические решения»
а) сведения о производственной программе и номенклатуре продукции, характеристику принятой технологической схемы производства в целом и характеристику отдельных параметров технологического процесса, требования к организации производства, данные о трудоемкости изготовления продукции - для объектов производственного назначения;
Заданием на проектирование предусматривается расстановка технологического оборудования в хозяйственном корпусе.
Технологический процесс:
Хозяйстве
45 руб.
Контрольная работа по дисциплине: Мультисервисные сети связи (часть 1). Вариант №06
IT-STUDHELP
: 2 апреля 2020
Задание № 1
Ответить на теоретический вопрос согласно Вашему варианту !
Таблица 2.1 – Варианты задания № 1
6 Взаимодействие NGN с традиционными сетями связи.
Задание № 2
1. Отобразить на рисунке те элементы сети (рис.2.1), которые включены в Ваш маршрут, согласно Вашему варианту из табл.2.2
2. Отобразить на этом же рисунке профили протоколов (плоскость C или U) для всех элементов сети, входящих в Ваш маршрут, согласно Вашему вари-анту из табл.2.2
Рисунок 2.1 – Схема мультисервисной сети
В
600 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 6 Вариант 24
Z24
: 16 декабря 2025
Газ — воздух с начальной температурой t1=27ºC сжимается в одноступенчатом поршневом компрессоре от давления p1=0,1 МПа до давления р2. Сжатие может происходить по изотерме, по адиабате и по политропе с показателем политропы n. Определить для каждого из трех процессов сжатия:
— конечную температуру газа t2,ºC;
— отведенную от газа теплоту Q,кВт;
— теоретическую мощность компрессора N, если его производительность G.
Дать сводную таблицу и изображение процессов в p-υ и T-s — диаграммах.
220 руб.