Линейная регрессия
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат тестаи его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат тестаи его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 09.06.2015
Полетайкин Алексей Николаевич
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 09.06.2015
Полетайкин Алексей Николаевич
Похожие материалы
Уравнения линейной регрессии, коэффициент регрессии
alfFRED
: 9 ноября 2013
Условие задачи
По предприятиям лёгкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.).
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.
3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимо
10 руб.
Уравнения линейной регрессии, коэффициент регрессии
Lokard
: 6 ноября 2013
Условие задачи
По предприятиям лёгкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.).
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.
3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимо
15 руб.
Составление и решение уравнений линейной регрессии
alfFRED
: 12 ноября 2012
Задача 1
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (, млн. руб.) от объема капиталовложений (, млн. руб.)
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.
3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимости парамет
15 руб.
Линейная модель множественной регрессии
Elfa254
: 15 сентября 2013
Задание 1
Линейная модель множественной регрессии ЛММР
Этап. Постановочный.
На постановочном этапе осуществляется определение конечных целей модели (прогноз, имитация, сценарий развития, управление) набор участвующих в ней факторов и показателей, их роль.
Пусть конечная цель модели - имитация поведения РТС индекса в зависимости цены акций.
Обозначим:
у - РТС индекс,
х1 - цена акции,
х2 - цена акции.
Этап. Априорный
На априорном этапе выполняется предметный анализ эконометрической сущно
5 руб.
Построение и расчет числовых характеристик вариационных рядов; построение модели линейной регрессии для несгруппированных данных
Amurka
: 4 мая 2016
Задание 1:
Вариант № 5. Имеются данные о суточном дебите газа в наблюдаемой скважине (м3/сут.):
30 19 21 28 27 29 31 24 25 28 28 32 34
26 24 19 23 27 30 29 25 18 18 24 28 31
33 18 21 26 30 32 34 29 26 23 25 27 32
23 20 21 26 22 20 27
Содержание работы: на основе совокупности данных опыта выполнить следующее:
1. Построить ряды распределения (интервальный и дискретный вариационные ряды). Изобразить их графики.
2. Построить график накопительных частот — кумуляту.
3. Составить эмпирическую фу
700 руб.
Линейные уравнения парной и множественной регрессии
evelin
: 12 ноября 2012
Волгоград 2010
Задача№ 1
По данным приведенным в таблице:
1) построить линейное уравнение парной регрессии y на x;
2) рассчитать линейный коэффициент парной корреляции и оценить тесноту связи;
3) оценить статистическую значимость параметров регрессии и корреляции, используя F-статистику, t-статистику Стьюдента и путем расчета доверительных интервалов каждого из показателей;
4) вычислить прогнозное значение y при прогнозном значении x, составляющем 108% от среднего уровня.
5) оценить точнос
19 руб.
Другие работы
Лабораторная работа №4. Исследование реактивных двухполюсников. Вариант №3
sunny2212
: 23 февраля 2015
1. Цель работы
Исследование зависимости входного сопротивления реактивного двухполюсника от частоты.
2. Подготовка к выполнению работы
При подготовке к работе необходимо изучить теорию реактивных двухполюсников, методы их анализа и синтеза (параграфы 4.5 и 16.6 электронного учебника).
3. Экспериментальная часть
3.1. Соберем схему реактивного двухполюсника (рисунок 1а, 1б).
E = 1 В, f = 1кГц, R0 = 10 кОм, L1 = L2 = 1 мГн, C1 = 63,536 нФ,
С2 = 15,831 нФ, С = 115 нФ.
250 руб.
Лабораторные работы 1-3 по дисциплине: Алгоритмы и вычислительные методы оптимизации. Вариант №4
IT-STUDHELP
: 14 ноября 2022
Вариант 4
Лабораторная работа No1
Решения систем линейных уравнений методом Жордана-Гаусса
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторну
900 руб.
Установка каталитического риформинга производительностью 750 тысяч тонн в год-Дипломная работа-Машины и аппараты нефтехимических производств
leha.nakonechnyy.2016@mail.ru
: 22 июля 2016
116 страниц , 36 таблиц , 6 рисунков .
Ключевые слова: каталитический риформинг, автомобильные бензины, ароматические углеводороды, бензол, ароматизация, октановое число.
Объектом исследования в дипломном проекте является подтверждение возможности снижения октанового числа прямогонной бензиновой фракции пу-тем увеличения содержания в ней ароматических углеводородов.
В процессе работы были изучены и проанализированы данные полу-ченные на основе экспериментов на установке проточного типа под
1138 руб.
Лабораторная работа №3 по дисциплине: Основы управления техническими системами. Вариант 01
xtrail
: 21 сентября 2024
Содержание
1 Цель работы 3
2 Описание лабораторной установки 4
3 Исходные данные к работе 5
4 Предварительный расчет 6
5 Лабораторное исследование 9
5.1 Исследование временных функций ошибки регулирования для статической и астатической системы 9
5.2 Временные функции ошибки регулирования 12
6 Выводы по работе 14
1 Цель работы
Исследование влияния структуры и параметров замкнутой линейной стационарной САУ на величину ошибки регулирования и параметры переходного процесса при детерминированных во
400 руб.