Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №5

Состав работы

material.view.file_icon DBF3B1FC-6048-4124-BCBF-10FA3CDE1A15.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 4 7 1
2 0 5 9 6
4 5 0 8 3
7 9 8 0 1
1 6 3 1 0

2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]

Дополнительная информация

Оценка - отлично!
Выполняю работы на заказ по различным дисциплинам. Пишите на почту: LRV967@ya.ru
Теория сложности вычислительных процессов и структур Билет 5
Билет No5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 040764 401327 010541 735037 624302 471720 Комментарии: Уважаемый студент, дистанционного обучения,
User maksim3843 : 6 марта 2023
300 руб.
Теория сложности вычислительных процессов и структур. Билет №5
Билет No5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 040764 401327 010541 735037 624302 471720
User IT-STUDHELP : 5 июля 2020
350 руб.
Теория сложности вычислительных процессов и структур. Билет №5 promo
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 5.
Билет №5 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User nik200511 : 18 декабря 2018
21 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 5.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
Билет №5 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. В скриншоте. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User wchg : 15 октября 2013
79 руб.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0 2)
400 руб.
promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 0 5 2 7) (6 0 4 1 3 2) (0 4 0 7 4 3) (5 1 7 0 6 1) (2 3 4 6 0 0) (7 2 3 1 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
User Roma967 : 21 мая 2025
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12 promo
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8
Билет №8 1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 7 7 7 1 4) (7 0 1 7 0 5) (7 1 0 5 6 4) (7 7 5 0 7 4) (1 0 6 7 0 4) (4 5 4 4 4 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограни
User Roma967 : 11 января 2025
350 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8 promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 6
Билет №6 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 2 7 2 2) (6 0 0 1 2 5) (2 0 0 4 0 7) (7 1 4 0 1 7) (2 2 0 1 0 0) (2 5 7 7 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического
User SibGOODy : 21 августа 2024
350 руб.
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх