Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №12 (РЕШЕНИЕ)
1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 14.05.2016
Рецензия:Уважаемый С*
Галкина М.Ю.
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 14.05.2016
Рецензия:Уважаемый С*
Галкина М.Ю.
Похожие материалы
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Roma967
: 21 мая 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур, билет №12
selkup
: 16 марта 2017
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформ
250 руб.
Экзаменационная работа по дисциплине: "Теория сложностей вычислительных процессов и структур". Билет № 12
xtrail
: 22 апреля 2013
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования с
350 руб.
Теория сложностей вычислительных процессов и структур. Билет №12
IT-STUDHELP
: 7 июня 2020
Билет No12
С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&6&0&5&2&7@6&0&4&1&3&2@0&4&0&7&4&3@5&1&7&0&6&1@2&3&4&6&0&0@7&2&3&1&0&0))
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимост
450 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
uberdeal789
: 23 мая 2015
Билет №12. (Все задачи решаются «вручную»)
1.По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
{0 0 34 7 0}
и тд..
2.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамическо
50 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
teacher-sib
: 23 февраля 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
300 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
MayaMy
: 23 февраля 2019
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1)
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 19.01.2019
Рецензия:Уважаемая ,
замечаний нет.
Галкина Марина Юрьевна
300 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Учеба "Под ключ"
: 25 января 2026
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0
500 руб.
Другие работы
Вентиль гидравлический. Вариант 20 ЧЕРТЕЖ
coolns
: 28 апреля 2025
Вентиль гидравлический. Вариант 20 ЧЕРТЕЖ
Вентиль предназначен для регулирования скорости подачи жидкости в гидравлических цепях технологических линий.
В правое резьбовое отверстие корпуса 5 завинчивается втулка 3 с надетой на неё гайкой 4.
При помощи гайки к вентилю будет присоединяться входной шланг. Для выхода жидкости предназначено верхнее отверстие корпуса. Слева в корпус вставляется клапан 6 с надетыми на него двумя уплотнительными шайбами 7 и упором 8. а выступающий резьбовой конец клапа
500 руб.
Теплотехника 5 задач Задача 4 Вариант 74
Z24
: 4 января 2026
Плоская стальная стенка толщиной δ1 (λ1 = 40 Вт/(м⸱К) с одной стороны омывается газами; при этом коэффициент теплоотдачи равен α1. С другой стороны стенка изолирована от окружающего воздуха плотно прилегающей к ней пластиной толщиной δ2 (λ2 = 0,15 Вт/(м⸱К). Коэффициент теплоотдачи от пластины к воздуху равен α2. Определить тепловой поток ql, Вт/м² и температуры t1, t2, и t3 поверхностей стенок, если температура продуктов сгорания tг, а воздуха — tв.
150 руб.
Эпюр 1. ПетрГУ. Вариант 20. Пересечение призмы и пирамиды.
Laguz
: 20 января 2026
Чертеж сделан компасе 21(то есть открываются всеми версиями компаса начиная с 21) + дополнительно сохранён в джпг, пдф
Если есть какие-то вопросы или нужно другой вариант, пишите.
150 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 4 Вариант 7
Z24
: 14 декабря 2025
Водяной пар изменяет свое состояние в процессах 1-2-3-4-5. Процесс 1-2 изохорный, 2-3 изобарный, 3-4 изотермический, 4-5 адиабатный. Начальная степень сухости пара х1=0,9. Параметры пара в точках 1, 2, 3, 4, 5 приведены в таблице 9.
Определить:
— недостающие параметры состояния в каждой точке (р, υ, T);
— изменение внутренней энергии (Δu);
— изменение энтропии (Δs);
— изменение энтальпии (Δh);
— внешнюю теплоту (q);
— работу расширения пара (l).
Использовать h-s — диаграм
300 руб.