Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №12 (РЕШЕНИЕ)
1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 14.05.2016
Рецензия:Уважаемый С*
Галкина М.Ю.
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 14.05.2016
Рецензия:Уважаемый С*
Галкина М.Ю.
Похожие материалы
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Roma967
: 21 мая 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур, билет №12
selkup
: 16 марта 2017
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформ
250 руб.
Экзаменационная работа по дисциплине: "Теория сложностей вычислительных процессов и структур". Билет № 12
xtrail
: 22 апреля 2013
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования с
350 руб.
Теория сложностей вычислительных процессов и структур. Билет №12
IT-STUDHELP
: 7 июня 2020
Билет No12
С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&6&0&5&2&7@6&0&4&1&3&2@0&4&0&7&4&3@5&1&7&0&6&1@2&3&4&6&0&0@7&2&3&1&0&0))
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимост
450 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
uberdeal789
: 23 мая 2015
Билет №12. (Все задачи решаются «вручную»)
1.По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
{0 0 34 7 0}
и тд..
2.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамическо
50 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
teacher-sib
: 23 февраля 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
300 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
MayaMy
: 23 февраля 2019
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1)
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 19.01.2019
Рецензия:Уважаемая ,
замечаний нет.
Галкина Марина Юрьевна
300 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Учеба "Под ключ"
: 16 июля 2025
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0 2)
400 руб.
Другие работы
Использование максимальной оценки при обосновании и принятии краткосрочных решений в бизнесе
Lokard
: 7 ноября 2013
Использование максимальной оценки при обосновании и принятии краткосрочных решений в бизнесе.
Метод анализ валовой прибыли.
Метод анализ безубыточности.
Методика учета ограничивающих факторов при обосновании плана производства.
1. Метод анализ валовой прибыли.
Этот метод основан на категории маржинального дохода. Термин «валовая прибыль» можно считать сокращением от термина «валовая прибыль, обеспечивающая покрытие постоянных затрат и получение прибыли».
Метод анализ валовой прибыли относи
15 руб.
Настольные системы управления базами данных (СУБД)
Slolka
: 6 октября 2013
Оглавление
Введение
1. Краткая характеристика СУБД
2. Microsoft Access
3. Microsoft Visual FoxPro 7.0
4. dBASE
Практическая часть
Заключение
Список использованной литературы
Введение
Современная жизнь немыслима без эффективного управления. Важной категорией являются системы обработки информации, от которых во многом зависит эффективность работы любого предприятия или учреждения. Такая система должна:
· обеспечивать получение общих и/или детализированных отчетов по итогам работы;
·
10 руб.
Информатика Лабораторные работы №1,2,3 СибГУТИ
ollein666
: 28 мая 2022
Лабораторные работы №1, №2 и №3 по дисциплине Информатика СибГУТИ
100 руб.
Римское право. 6 задача.
studypro3
: 1 июля 2019
1. Некто заказал скульптору портрет своей жены и предоставил для этой цели мрамор. Между тем скульптор получил более выгодный заказ - изваять скульптурный портрет императора. Не имея под рукой материала, он использовал мрамор первого заказчика. Тот, увидев результат, согласился принять и оплатить скульптуру императора. Скульптор возражал, упирая на то, что собственником изделия можно считать мастера, "вдохнувшего в безжизненный камень душу". Заказчик настаивал на том, что собственность должна пр
200 руб.