Теория информации. Лабораторная работа № 1- № 5
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Тема: Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содержать последовательность символов с равномерным распределением, т.е. символы встречаются в последовательности равновероятно и независимо.
Второй файл (F2) содержит последовательность символов с неравновероятным распределением.
2. Составить программу, определяющую несколько оценок энтропии созданных текстовых файлов. Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты.
Оценка энтропии
(частоты отдельных символов) Теоретическое значение энтропии
(отдельные символы) Оценка энтропии
(частоты пар символов) Теоретическое значение энтропии
(для пар символов)
F1
F2
Тема: Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Составить программу, определяющую несколько оценок энтропии текстового файла (размер не менее 10 Кб). Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравнить полученные результаты с результатами лабораторной работы 1.
Название текста Максимально возможное значение энтропии Оценка энтропии
(одиночные символы) Оценка энтропии
(частоты пар символов)
Текст №1
(фрагмент художественного произведения)
Текст №2 (фрагмент художественного произведения)
Текст написанной программы
Тема: Оптимальное побуквенное кодирование.
Цель работы: Изучение метода оптимального кодирования Хаффмана.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в лабораторных работах №1,2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Текст №1
Текст №2
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Тема: Методы почти оптимального кодирования.
Цель работы: Изучение метода почти оптимального кодирования Фано.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано. Текстовые файлы использовать те же, что и в лабораторной работе №1 и 2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3 После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Текст №1
Текст №2
Метод Фано Текст №1
Текст №2
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Тема: Почти оптимальное кодирование
Цель работы: Изучение метода почти оптимального кодирования Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в лабораторной работе №1-4. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Текст №1
Текст №2
Метод Шеннона Текст №1
Текст №2
Метод Фано Текст №1
Текст №2
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содержать последовательность символов с равномерным распределением, т.е. символы встречаются в последовательности равновероятно и независимо.
Второй файл (F2) содержит последовательность символов с неравновероятным распределением.
2. Составить программу, определяющую несколько оценок энтропии созданных текстовых файлов. Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты.
Оценка энтропии
(частоты отдельных символов) Теоретическое значение энтропии
(отдельные символы) Оценка энтропии
(частоты пар символов) Теоретическое значение энтропии
(для пар символов)
F1
F2
Тема: Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Составить программу, определяющую несколько оценок энтропии текстового файла (размер не менее 10 Кб). Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравнить полученные результаты с результатами лабораторной работы 1.
Название текста Максимально возможное значение энтропии Оценка энтропии
(одиночные символы) Оценка энтропии
(частоты пар символов)
Текст №1
(фрагмент художественного произведения)
Текст №2 (фрагмент художественного произведения)
Текст написанной программы
Тема: Оптимальное побуквенное кодирование.
Цель работы: Изучение метода оптимального кодирования Хаффмана.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в лабораторных работах №1,2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Текст №1
Текст №2
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Тема: Методы почти оптимального кодирования.
Цель работы: Изучение метода почти оптимального кодирования Фано.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано. Текстовые файлы использовать те же, что и в лабораторной работе №1 и 2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3 После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Текст №1
Текст №2
Метод Фано Текст №1
Текст №2
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Тема: Почти оптимальное кодирование
Цель работы: Изучение метода почти оптимального кодирования Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в лабораторной работе №1-4. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Текст №1
Текст №2
Метод Шеннона Текст №1
Текст №2
Метод Фано Текст №1
Текст №2
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Дополнительная информация
Год сдачи лабораторных работ 2016. Оценка зачет. Работы выполнена без замечаний на С++.
Похожие материалы
Теория информации. Лабораторные работы №1-5 на С++
rmn77
: 17 февраля 2019
Теория информации. Лабораторные работы №1-5 на С++. Все варианты.
Лабораторная работа 1
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 ил
10 руб.
Теория информации. Лабораторные работы №1-5.
sibguter
: 17 октября 2018
Тема: Вычисление энтропии Шеннона
Тема: Вычисление энтропии Шеннона
Тема: Оптимальное побуквенное кодирование
Тема: Методы почти оптимального кодирования
Тема: Почти оптимальное кодирование
69 руб.
Теория информации. Лабораторные работы 1-5
aikys
: 12 февраля 2018
Л Р1
Вычисление энтропии Шеннона
Порядок выполнения работы
1. Изучить теоретический материал гл. 2.
2. Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и за-главные буквы не отличаются, знаки препинания рассматриваются как один символ, про-бел является самостоятельным символом), которые можно использовать как оценки веро-ятностей появления символов. Затем вычислить величину энтропии Шен
80 руб.
Теория информации. Лабораторные работы №1-5.
growlist
: 12 апреля 2017
Лабораторная работа №1:
Задание:
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) долж
30 руб.
Теория информации. Лабораторные работы №1-5
danila1271
: 28 ноября 2016
Лабораторная №1
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем
70 руб.
Лабораторные работы №1-№5 по Теории Информации
fominovich
: 5 сентября 2015
Лабораторная работа № 1 «Вычисление энтропии Шеннона».
1. Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Точность вычисления -- 4 знака после запятой
1000 руб.
Теория Информации. Лабораторные работы №№1-5
Иван90
: 13 марта 2015
1.Вычисление энтропии Шеннона
2.Оптимальный код Хаффмана
3.Почти оптимальное алфавитное кодирование
4.Адаптивное кодирование
5.Словарные коды
500 руб.
Теория информации. Лабораторные работы №1-5 на С++. Для всех вариантов.
Алексей134
: 25 марта 2020
Лабораторная работа №1
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем
50 руб.
Другие работы
Социальная и этническая идентичности
Qiwir
: 13 октября 2013
Проблематика социальной идентичности находится на стыке интересов социологии, истории, культурологии, когнитивной психологии, психологии личности и социальной психологии. Однако долгое время она находилась на периферии научного анализа в психологии. В последние годы она обрела свое место в психологии познания.
Анализ процесса становления современных представлений о социальной идентичности показывает, что интерес к исследованиям в этой области возник в русле общепсихологических и социально-психо
11 руб.
Світове господарство стан та тенденції розвитку
evelin
: 20 ноября 2013
Вступ 1
Світове господарство як економічна категорія 2
Розвиток світового господарства 5
Структура світового господарства 7
Закономірності та тенденції розвитку світового господарсива 11
Список використаної літератури 14
ВСТУП
На сучасному етапі суспільного розвитку значну роль для економіки кожної окремої країни і світу вцілому відіграє світове господарство, яке поєднує національні господарства, що пов’язані і взаємодіють за законами міжнародного поділу праці.
Він полягає в спеціалізаці
15 руб.
Понятие лингвистической переменной. Язык программирования Prolog
alfFRED
: 10 октября 2013
Содержание
1. Нечеткая лингвистическая переменная
2. Пролог - язык программирования ЭС
Используемая литература
Вопрос 24. Нечеткая лингвистическая переменная
Понятие лингвистической переменной
Лингвистическая переменная отличается от числовой переменной тем, что ее значениями являются не числа, а слова или предложения в естественном или формальном языке. Поскольку слова, в общем, менее точны, чем числа, понятие лингвистической переменной дает возможность приближенно описывать явления, ко
10 руб.
Контрольная работа по дисциплине: Обеспечение информационной безопасности в телекоммуникациях. Вариант №3
IT-STUDHELP
: 18 декабря 2022
Контрольная работа
По дисциплине: Обеспечение информационной безопасности в телекоммуникациях
Вариант 3
Задание:
По сети связи от узла источника (УИ) к узлу получателя (УП) через m транзитных узлов (ТУ) по n параллельным соединениям (рисунок 1) передается сообщение S={S_1,S_2 }, с соответствующими априорными вероятностями их появления в канале связи:
0≤P(S_i)≤1,
∑_(i=1)^n▒〖P(S_i)=1〗.
В каждом из n параллельных соединениях возможно внешнее воздействие несанкционированно действующего лица c веро
600 руб.