Теория сложности вычислительных процессов и структур. Экзамен. Билет №3

Состав работы

material.view.file_icon
material.view.file_icon Экзамен.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0

2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
Теория сложности вычислительных процессов и структур. Экзамен. Билет № 3
Билет №3 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 0 24 0 45 0 0 32 25 44 24 32 0 0 19 0 25 0 0 50 45 44 19 50 0 2. Оптимальным образом расставить скобки при перемножении матриц М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
User Багдат : 21 января 2018
89 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет № 3
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3.
Билет №3 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
User SibGUTI2 : 20 мая 2016
150 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №3
Билет No3 1. С помощью алгоритма Дейкстры найти кратчайшие расстоя-ния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного гра-фа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означа-ет, что соответствующей дуги нет). 0 7 2 6 0 5 7 0 1 7 6 3 2 1 0 4 6 2 6 7 4 0 7 3 0 6 6 7 0 2 5 3 2 3 2 0 2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[2×8],M2[8×6],M3[6×3], M4[3×2],M5[2×7].
User IT-STUDHELP : 2 ноября 2019
390 руб.
promo
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Билет 7 С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). а b c d E f 0 0 4 0 0 5 3 1 4 0 7 2 4 4 2 0 7 0 6 1 5 3 0 2 6 0 4 7 4 5 4 1 4 0 3 5 3 4 5 7 3 0
User Светлана59 : 31 марта 2023
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
User Lele911 : 22 мая 2022
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Ознакомительная практика. Вариант №6
Выдано обучающемуся Фамилия Имя Отчество студента Направление: 11.03.02 – Инфокоммуникационные технологии и системы связи Код – Наименование направления Профиль: Защищенные системы и сети связи Курс 4, группа Наименование практики: производственная практика по получению профессиональных умений и опыта профессиональной деятельности Содержание практики*: Наименование видов деятельности Дата (начало – окончание) озна
User IT-STUDHELP : 1 декабря 2021
900 руб.
promo
Операция дискретизации. Вариант 09
Многоканальные телекоммуникационные системы Лабораторная работа 1. Вариант 09. Тема: Операция дискретизации Цель работы: Целью работы является изучение влияния частоты дискретизации на форму выходного сигнала. Предварительный расчет Произвести расчет Fд, если спектр сигнала 0,3-12,7 кГц На основании теоремы Котельникова F Д ≥FВ. FД ≥ 12,7*2=25,4 кГц , выбираем FД = 28 кГц (значение кратное 2) 1 Описание лабораторного макета. Макет состоит из передающей и приемной части, осциллогрофа и анализато
User sibgutimts : 7 ноября 2011
250 руб.
Определение стоимости основных фондов
1.Построить интервальный вариационный ряд с равными интервалами, выделив n групп предприятий по величине стоимости основных фондов. 2.Изобразить полученный вариационный ряд графически в виде гистограммы и полигона распределения. 3.Построить кумуляту распределения предприятий по величине стоимости основных фондов. 4.Определить по данным вариационного ряда среднюю стоимость основных фондов. Решение. 1.Построим интервальный вариационный ряд с равными интервалами, выделив 10 групп предприятий п
User evelin : 1 ноября 2013
10 руб.
Построение математических моделей при решении задач оптимизации
План Введение Математические модели и их свойства. Практические задачи, приводящие к исследованию линейной функции. Использование свойств квадратичной функции при решении экстремальных задач. Применение методов дифференциального исчисления при решении прикладных задач. Заключение. Список литературы. Введение Большую часть своих усилий человек тратит на поиск наилучшего т.е. оптимального решения поставленной задачи. Как, располагая определенными ресурсами, добиваться наиболее высокого жизненного
User alfFRED : 13 августа 2013
10 руб.
up Наверх