Теория сложности вычислительных процессов и структур. Экзамен. Билет №3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
Похожие материалы
Теория сложности вычислительных процессов и структур. Экзамен. Билет № 3
Багдат
: 21 января 2018
Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
89 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3.
SibGUTI2
: 20 мая 2016
Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
150 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №3
IT-STUDHELP
: 2 ноября 2019
Билет No3
1. С помощью алгоритма Дейкстры найти кратчайшие расстоя-ния от вершины 0
(нумерация вершин начинается с 0) до всех остальных вершин связного
взвешенного неориентированного гра-фа, имеющего 6 вершин.
Граф задан матрицей смежности, (0 означа-ет, что соответствующей дуги нет).
0 7 2 6 0 5
7 0 1 7 6 3
2 1 0 4 6 2
6 7 4 0 7 3
0 6 6 7 0 2
5 3 2 3 2 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[2×8],M2[8×6],M3[6×3],
M4[3×2],M5[2×7].
390 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Lele911
: 22 мая 2022
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
150 руб.
Другие работы
Лабораторная работа №2 по дисциплине:Элементная база телекоммуникационных систем. Вариант №4
IT-STUDHELP
: 18 ноября 2021
Лабораторная работа №2
ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ПОЛЕВЫХ ТРАНЗИСТОРОВ
Таблица 1.1 – Характеристики транзистора с управляющим p-n переходом
Марка транзистора (тип канала) BF246B
Параметры
Ед.изм. mA B B B B
Количественные значения 80 25 -25 -5.4
1 Задание на подготовку к выполнению лабораторной работы
Тема: Исследование характеристик полевых транзисторов
Цель работы: Изучить статические ВАХ и другие определяющие характеристики полевых транзисторов (лекция 3)
Выполнению данной
300 руб.
Онлайн-тест по дисциплине: Схемотехника телекоммуникационных устройств. Помогу пройти БЕСПЛАТНО!
IT-STUDHELP
: 23 января 2021
Вопрос №1
При подачи от источника синусоидального сигнала (fс = 1кГц) на выходе усилителя, помимо основной гармоники (Um1 = 2 В, fс = 1кГц) появились дополнительные частотные составляющие (Um2 =0,5 В, f2 = 2кГц; Um3 = 0,1 В, f3 = 3кГц; Um4 = 0,065 В, f4 = 4кГц). Определить коэффициент гармоник, выраженный в %:
36,13%
28,63%
25,67%
15,81%
Вопрос №2
Как изменится АЧХ усилительного каскада (по сравнению с исходной), если уменьшить значение разделительной емкости:
1
2
3
4
Вопрос №3
Нелин
600 руб.
Расчет консольного передвижного не поворотного крана
Torxed
: 12 декабря 2013
В процессе подготовки будущего инженера к самостоятельному решению технических и производственных задач одно из ведущих мест принадлежит курсовому проектированию.
Цель данного курсового проекта – закрепить и обобщить теоретический материал, изложенный в курсе «Подъёмно-транспортные механизмы».
Грузоподъёмные машины применяются во всех отраслях народного хозяйства. В них используются различные механизмы, приводы, металлоконструкции и др. очень чётко выявляются действия нагрузок, особенно динамиче
Образование русского централизованного государства
Slolka
: 5 сентября 2013
Развитие феодального способа производства, в основе которого лежит натуральное хозяйство, приводит к феодальной раздробленности, которая является объективным и прогрессивным этапом в развитии общества. Развивается ремесло, сельское хозяйство, торговля, культура, города. Дальнейшее развитие феодального производства и прогресс в развитии производительных сил приводит к кризису этого способа производства (высшей точки развития, после которой необходимо избрать другой метод). Развитие городов и торг
10 руб.