Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2018 год)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 5 0 1 7 1)
(5 0 2 3 2 4)
(0 2 0 5 3 1)
(1 3 5 0 4 5)
(7 2 3 4 0 3)
(1 4 1 5 3 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 22
2 3 12
3 7 26 52
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 5 0 1 7 1)
(5 0 2 3 2 4)
(0 2 0 5 3 1)
(1 3 5 0 4 5)
(7 2 3 4 0 3)
(1 4 1 5 3 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 22
2 3 12
3 7 26 52
Дополнительная информация
Оценка - отлично!
Дата сдачи: ноябрь 2018 г.
Преподаватель: Галкина М.Ю.
Помогу с другим билетом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Дата сдачи: ноябрь 2018 г.
Преподаватель: Галкина М.Ю.
Помогу с другим билетом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Похожие материалы
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №2
Алексей134
: 4 марта 2021
Билет №2
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
(0 2 4 7 1)
(2 0 5 6 9)
(4 5 0 8 3)
(7 6 8 0 1)
(1 9 3 1 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара
100 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №2
Учеба "Под ключ"
: 12 мая 2017
Билет №2
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
(0 2 4 7 1)
(2 0 5 6 9)
(4 5 0 8 3)
(7 6 8 0 1)
(1 9 3 1 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждо
350 руб.
Контрольная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №9 (2018 год)
SibGOODy
: 20 ноября 2018
«Задача о перемножении матриц»
Задание на контрольную работу
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0×r1], M2[r1×r2], M3[r2×r3], M4[r3×r4], M5[r4×r5], M6[r5×r6], M7[r6×r7], M8[r7×r8], M9[r8×r9], M10[r0×r10], M11[r10×r11], M12[r11×r12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Н
450 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №2
Cherebas
: 24 марта 2013
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 4 7 1
2 0 5 6 9
4 5 0 8 3
7 6 8 0 1
1 9 3 1 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического
100 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Учеба "Под ключ"
: 16 июля 2025
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0 2)
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Roma967
: 21 мая 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
400 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8
Roma967
: 11 января 2025
Билет №8
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 7 7 7 1 4)
(7 0 1 7 0 5)
(7 1 0 5 6 4)
(7 7 5 0 7 4)
(1 0 6 7 0 4)
(4 5 4 4 4 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограни
350 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 6
SibGOODy
: 21 августа 2024
Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 2 7 2 2)
(6 0 0 1 2 5)
(2 0 0 4 0 7)
(7 1 4 0 1 7)
(2 2 0 1 0 0)
(2 5 7 7 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического
350 руб.
Другие работы
Сборник задач по машиностроительной гидравлике Задача 9.10
Z24
: 11 ноября 2025
Какой предельной длины L можно сделать пожарный рукав диаметром D = 65 мм. если при давлении М = 0,8 МПа (по манометру) подача через установленный на конце ствола насадок, выходной диаметр которого d = 30 мм, должна составлять Q = 1,2 м³/мин?
Ствол поднят выше манометра на h = 10м; коэффициент сопротивления ствола с насадком ζ = 0,1 (сжатие струи на выходе отсутствует). Местные потери в рукаве не учитывать.
Задачу решить, предполагая, что используются непрорезиненные (λ = 0,054) и прорез
180 руб.
Гидромеханика: Сборник задач и контрольных заданий УГГУ Задача 2.35 Вариант в
Z24
: 4 октября 2025
Резервуар с вертикальной и наклонной стенками шириной В заполнен мазутом и водой. Глубина наполнения мазута над водой Н1, нижний слой воды высотой Н2 (рис. 2.35).
Определить равнодействующую сил давления мазута и воды и глубину погружения центра давления для этой силы (hD). Расчет провести аналитическим и графо-аналитическим методами. Угол наклона нижней части стенки к горизонту α = 60º. Плотности жидкостей: воды ρ = 10³ кг/м³; мазута ρмаз = 920 кг/м³.
450 руб.
Экономика №10 вариант
bayball
: 28 января 2014
Вариант 10
2. Определите по предприятию процент роста производительности труда, условную и абсолютную экономию штата, полученную за счет роста производительности труда.
Исходные данные:
Наименование показателей План Отчет
Доходы, тыс. руб. 15 500 рост на 3,2%
Среднесписочная численность работников чел. 125 123
РЕШЕНИЕ:
Доходы в абсолютном выражении за отчетный период составили: 15 500*1,032=15 996
100 руб.
Психологические особенности морального самосознания в подростковом возрасте
alfFRED
: 11 октября 2013
СОДЕРЖАНИЕ
Введение
1 Теоретические аспекты изучения морального самосознания в подростковом возрасте
1.1 Самосознание как психологическая характеристика личности
1.2 Особенности развития морального самосознания в подростковом возрасте
2 Эмпирическое изучение морального самосознания в подростковом возрасте
2.1 Организация эмпирического исследования
2.2 Характеристика применяемых методов и методик
2.3 Результаты исследования
2.3.1 Результаты исследования морального самосознания подростков