Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2018 год)

Состав работы

material.view.file_icon E7E38ABF-6100-4168-AEA5-5BFD87974038.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №2

1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 5 0 1 7 1)
(5 0 2 3 2 4)
(0 2 0 5 3 1)
(1 3 5 0 4 5)
(7 2 3 4 0 3)
(1 4 1 5 3 0)

2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 22
2 3 12 
3 7 26 52

Дополнительная информация

Оценка - отлично!
Дата сдачи: ноябрь 2018 г.
Преподаватель: Галкина М.Ю.
Помогу с другим билетом.

Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №2
Билет №2 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. (0 2 4 7 1) (2 0 5 6 9) (4 5 0 8 3) (7 6 8 0 1) (1 9 3 1 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара
User Алексей134 : 4 марта 2021
100 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №2
Билет №2 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. (0 2 4 7 1) (2 0 5 6 9) (4 5 0 8 3) (7 6 8 0 1) (1 9 3 1 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждо
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 2 4 7 1 2 0 5 6 9 4 5 0 8 3 7 6 8 0 1 1 9 3 1 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического
User Cherebas : 24 марта 2013
100 руб.
Контрольная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №9 (2018 год)
«Задача о перемножении матриц» Задание на контрольную работу Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0×r1], M2[r1×r2], M3[r2×r3], M4[r3×r4], M5[r4×r5], M6[r5×r6], M7[r6×r7], M8[r7×r8], M9[r8×r9], M10[r0×r10], M11[r10×r11], M12[r11×r12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Н
User SibGOODy : 20 ноября 2018
450 руб.
promo
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0 2)
400 руб.
promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 0 5 2 7) (6 0 4 1 3 2) (0 4 0 7 4 3) (5 1 7 0 6 1) (2 3 4 6 0 0) (7 2 3 1 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
User Roma967 : 21 мая 2025
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12 promo
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8
Билет №8 1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 7 7 7 1 4) (7 0 1 7 0 5) (7 1 0 5 6 4) (7 7 5 0 7 4) (1 0 6 7 0 4) (4 5 4 4 4 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограни
User Roma967 : 11 января 2025
350 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8 promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 6
Билет №6 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 2 7 2 2) (6 0 0 1 2 5) (2 0 0 4 0 7) (7 1 4 0 1 7) (2 2 0 1 0 0) (2 5 7 7 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического
User SibGOODy : 21 августа 2024
350 руб.
Задание 15. Вариант 20 - Отрезок
Возможные программы для открытия данных файлов: WinRAR (для распаковки архива *.zip или *.rar) КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d Любая программа для ПДФ файлов. Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007. Задание 15. Вариант 20 - Отрезок По заданным координатам концов отрезка АВ построить его наглядное изображение и комплексный чертеж. Определить положение отрезка относительно плоскостей проекций. В состав выполненной работы входят 2 фа
50 руб.
Задание 15. Вариант 20 - Отрезок
Экономическая оценка инвестиций. Билет №3
1. Какой вид инвестиционной политики существует кроме государственной 2. Одна из основных форм инвестиционного механизма 3. Каковы основные причины, обуславливающие необходимость инвестиции 4. Назовите наиболее универсальную форму капитала 5. В процессе производства продукции капитал используется в комплексе с 6. Кто решает, в какие фирмы имущества инвестировать капитал 7. Кому на первоначальном этапе как правило принадлежат права собственности и распоряжения 8. Высокодоходные инвестиции
User karinjan : 29 марта 2016
100 руб.
Роль главного бухгалтера на предприятии
СОДЕРЖАНИЕ ВВЕДЕНИЕ………………………………………………………………………..3 I Роль главного бухгалтера на предприятии…………………………………….6 II Функциональные обязанности главного бухгалтера………………………..11 III Права главного бухгалтера…………………………………………………..14 IV Ответственность главного бухгалтера……………………………………...17 ЗАКЛЮЧЕНИЕ………………………………………………………………….23 ЧАСТЬ №2 РАЗРАБОТКА УЧЕТНОЙ ПОЛИТИКИ…………………………24 ЧАСТЬ№3 РЕШЕНИЕ ПРАКТИЧЕСКОЙ СИТУАЦИИ……………………..32 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………………………..34 ВВЕДЕНИЕ Приход в
User Qiwir : 30 декабря 2014
5 руб.
Система социального страхования, как средство защиты населения
Введение Глава 1. Понятие, виды, особенности социального страхования 1.1. Страхование как форма защиты населения 1.2. Виды социального страхования 1.3. Особенности социального страхования Глава 2. Современная система социального страхования в Российской Федерации 2.1. Система государственных внебюджетных фондов 2.2. Принципы построения системы социального страхования в РФ 2.3. Модели финансирования социального страхования Заключение Список используемой литературы
User OstVER : 5 ноября 2012
5 руб.
up Наверх