Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2019 год)

Состав работы

material.view.file_icon
material.view.file_icon экз билет 2.docx
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Билет №2

1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0


2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.

Номер товара, i mi сi M
1 6 25 22
2 3 12 
3 7 26

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 20.01.2019
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна

Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2.
Билет №2 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программ
User freelancer : 17 августа 2016
70 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 2 4 7 1 2 0 5 6 9 4 5 0 8 3 7 6 8 0 1 1 9 3 1 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического
User Cherebas : 24 марта 2013
100 руб.
Контрольная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №9 (2019 год)
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0×r1], M2[r1×r2], M3[r2×r3], M4[r3×r4], M5[r4×r5], M6[r5×r6], M7[r6×r7], M8[r7×r8], M9[r8×r9], M10[r0×r10], M11[r10×r11], M12[r11×r12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта 9 r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
User IT-STUDHELP : 1 февраля 2019
440 руб.
promo
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
User uliya5 : 14 апреля 2024
300 руб.
Термодинамика и теплопередача. Техническая термодинамика ОмГУПС 2013 Задача 19 Вариант 2
Как изменится теоретическая скорость истечения перегретого пара давлением р1 в атмосферу (р2 = 0,1 МПа), если суживающееся сопло дополнить расширяющейся частью, т. е. заменить соплом Лаваля. Начальная температура пара t1. Теплообменом и трением в сопле пренебречь.
User Z24 : 16 ноября 2025
180 руб.
Термодинамика и теплопередача. Техническая термодинамика ОмГУПС 2013 Задача 19 Вариант 2
ВИРОБНИЧИЙ КОРПУС одноповерхової будівлі. Проект з ТБВ
Пояснювальна записка до курсового проекту з технології будівельного виробництва на монтажні роботи ЗМІСТ 1. Характеристика об’єкта та умов будівництва (схеми об’єкту). 2. Специфікація збірних конструкцій. 3. Вибір методів виконання робіт. 3.1. Вибір методів монтажу. 3.2. Вибір монтажних пристроїв. 3.2.1. Вантажезахватні пристрої. 3.2.2. Пристрої тимчасового закріплення. 3.2.3. Засоби підмащування 3.3. Вибір способів постійного закріплення. 3.4. Вибір мон
User SerFACE : 11 октября 2014
20 руб.
Гидравлика Пермская ГСХА Задача 76 Вариант 2
Сложный трубопровод с параллельным и последовательным соединением труб подключен к баку с водой и должен обеспечивать расходы Q2 и Q3 в узловых точках 2 и 3, а также избыточное давление рм на выходе (при полностью открытой задвижке). Определить, какой потребуется для этого уровень воды в баке H. Потери напора на местных сопротивлениях принять равными 10% от потерь напора по длине.
User Z24 : 5 ноября 2025
150 руб.
Гидравлика Пермская ГСХА Задача 76 Вариант 2
Лабораторная работа (№№1-3) по предмету « Теория электрической связи». Вариант №12
Лабораторная работа №1 по предмету « Теория электрической связи». ИССЛЕДОВАНИЕ ПОМЕХОУСТОЙЧИВОСТИ ДИСКРЕТНЫХ ВИДОВ МОДУЛЯЦИИ. Цель работы Изучение и экспериментальное исследование влияния вида модуляции (AM, ЧМ, ФМ) на помехоустойчивость системы передачи дискретных сообщений, изучение методики экспериментального измерения вероятности ошибки. Описание лабораторной установки Предварительная подготовка к работе Выполнение работы Вывод Лабораторная работа №2 по предмету « Теория электрической связ
User Amor : 20 октября 2013
700 руб.
promo
up Наверх