Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2019 год)
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 22
2 3 12
3 7 26
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 22
2 3 12
3 7 26
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 20.01.2019
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 20.01.2019
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Похожие материалы
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
holm4enko87
: 15 мая 2025
илет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
270 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2.
freelancer
: 17 августа 2016
Билет №2
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программ
70 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №2
Cherebas
: 24 марта 2013
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 4 7 1
2 0 5 6 9
4 5 0 8 3
7 6 8 0 1
1 9 3 1 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического
100 руб.
Контрольная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №9 (2019 год)
IT-STUDHELP
: 1 февраля 2019
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0×r1], M2[r1×r2], M3[r2×r3], M4[r3×r4], M5[r4×r5], M6[r5×r6], M7[r6×r7], M8[r7×r8], M9[r8×r9], M10[r0×r10], M11[r10×r11], M12[r11×r12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта 9
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
440 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
teacher-sib
: 23 февраля 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
uliya5
: 14 апреля 2024
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
300 руб.
Другие работы
Термодинамика и теплопередача. Техническая термодинамика ОмГУПС 2013 Задача 19 Вариант 2
Z24
: 16 ноября 2025
Как изменится теоретическая скорость истечения перегретого пара давлением р1 в атмосферу (р2 = 0,1 МПа), если суживающееся сопло дополнить расширяющейся частью, т. е. заменить соплом Лаваля. Начальная температура пара t1. Теплообменом и трением в сопле пренебречь.
180 руб.
ВИРОБНИЧИЙ КОРПУС одноповерхової будівлі. Проект з ТБВ
SerFACE
: 11 октября 2014
Пояснювальна записка до курсового
проекту з технології будівельного
виробництва на монтажні роботи
ЗМІСТ
1. Характеристика об’єкта та умов будівництва (схеми
об’єкту).
2. Специфікація збірних конструкцій.
3. Вибір методів виконання робіт.
3.1. Вибір методів монтажу.
3.2. Вибір монтажних пристроїв.
3.2.1. Вантажезахватні пристрої.
3.2.2. Пристрої тимчасового закріплення.
3.2.3. Засоби підмащування
3.3. Вибір способів постійного закріплення.
3.4. Вибір мон
20 руб.
Гидравлика Пермская ГСХА Задача 76 Вариант 2
Z24
: 5 ноября 2025
Сложный трубопровод с параллельным и последовательным соединением труб подключен к баку с водой и должен обеспечивать расходы Q2 и Q3 в узловых точках 2 и 3, а также избыточное давление рм на выходе (при полностью открытой задвижке). Определить, какой потребуется для этого уровень воды в баке H. Потери напора на местных сопротивлениях принять равными 10% от потерь напора по длине.
150 руб.
Лабораторная работа (№№1-3) по предмету « Теория электрической связи». Вариант №12
Amor
: 20 октября 2013
Лабораторная работа №1 по предмету « Теория электрической связи».
ИССЛЕДОВАНИЕ ПОМЕХОУСТОЙЧИВОСТИ ДИСКРЕТНЫХ ВИДОВ МОДУЛЯЦИИ.
Цель работы
Изучение и экспериментальное исследование влияния вида модуляции (AM, ЧМ, ФМ) на помехоустойчивость системы передачи дискретных сообщений, изучение методики экспериментального измерения вероятности ошибки.
Описание лабораторной установки
Предварительная подготовка к работе
Выполнение работы
Вывод
Лабораторная работа №2 по предмету « Теория электрической связ
700 руб.