Страницу Назад
Поискать другие аналоги этой работы

190

Контрольная работа. Дискретная математика. Вариант 0

ID: 198313
Дата закачки: 03 Февраля 2019
Продавец: AlexBrookman (Напишите, если есть вопросы)
    Посмотреть другие работы этого продавца

Тип работы: Работа Контрольная
Сдано в учебном заведении: СибГУТИ

Описание:
Вариант 10

№1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\\B) È (AÇ C) = A\\(B\\C) б) (AÈ B)´ (CÈ D)=(A´ C)È (B´ C)È (A´ D)È (B´ D).

№2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A´ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,1),(4,4)}.

№3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í R2, P = {(x,y) | x2 ³ y}.

№4 Доказать утверждение методом математической индукции:
1·2 + 2·5 + 3·8 + … + n·(3·n–1) = n2·(n+1).

№5 Десять студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по двое в каждой. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за четырьмя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?

№6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 20 или 25? б) делящихся ровно на одно из этих трех чисел?

№7 Найти коэффициенты при a=x3·y2·z3, b=x2·y2·z2, c=x6·z4 в разложении (5·x3+3·y+2·z)6.

№8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 7·an+1 + 5·an = 0· и начальным условиям a1=6, a2=9.

№9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).


№10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.



Комментарии: Оценка:Зачет
Дата оценки: 2017
Преподаватель: Бах Ольга Анатольевна

Размер файла: 770,6 Кбайт
Фаил: Упакованные файлы (.rar)
-------------------
Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные!
Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот.
-------------------

   Скачать

   Добавить в корзину


    Скачано: 7         Коментариев: 0


Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Дискретная математика / Контрольная работа. Дискретная математика. Вариант 0
Вход в аккаунт:
Войти

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
UnionPay СБР Ю-Money qiwi Payeer Крипто-валюты Крипто-валюты


И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках


Сайт помощи студентам, без посредников!