Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №13

Состав работы

material.view.file_icon EB3071FD-DF11-4286-A82A-C12B22251251.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет No13

1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).

2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×8],M4[8×4],M5[4×7]

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 19.04.2019
Рецензия:Уважаемый ,

Галкина Марина Юрьевна

Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №13
Билет 13. Задание 1. Дано: неориентированный граф, заданный матрицей весов рёбер. 0 2 0 0 0 2 0 5 3 4 0 5 0 0 2 0 3 0 0 4 0 4 2 4 0 Найти: минимальное остовное дерево алгоритмом Крускала.
User Amor : 27 октября 2013
250 руб.
promo
Теория сложностей вычислительных процессов и структур (БИЛЕТ №13)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 1. Оптимальным образом расставить скобки при перемножении матриц М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
User GTV8 : 4 мая 2013
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3*5],M2[5*2],M3[2*8],M4[8*4],M5[4*7]
User DArt : 12 апреля 2022
70 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №13
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 0 2 0 0 0 2 0 5 3 4 0 5 0 0 2 0 3 0 0 4 0 4 2 4 0 2.Оптимальным образом расставить скобки при перемножении матриц М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
User sun525 : 10 ноября 2014
150 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Экзаменационный билет № 13 по дисциплине Теория сложности вычислительных процессов и структур
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2.Оптимальным образом расставить скобки при перемножении матриц М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
User Некто : 16 сентября 2018
100 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх