Модернизация картофелесажалки СН-4Б (конструкторская часть дипломного проекта + чертеж)
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра изображений
- Microsoft Word
- Компас или КОМПАС-3D Viewer
Описание
3. КОНСТРУКТОРСКИЙ УЗЕЛ
3.1. Обоснование выбора узла
Протравливание посадочного материала фунгицидами или биологи-ческими препаратами является обязательным технологическим приёмом, в первую очередь направленным против клубне- и почвообитающего гриба Rhizoctonia solani – основного возбудителя болезней проростков, столонов и клубней картофеля особенно на связных и богатых органической субстанцией и малоаэрируемых влажных почвах. Кроме снижения урожай-ности, гриб вызывает и значительное снижение товарных качеств столового картофеля [4].
На данном этапе производства картофеля в новой технологии не применяется процесс протравливание. Доказано опытным путём, что по этой причине ежегодно хозяйства недополучают валовой сбор картофеля в среднем на 20-25%. В связи с этим в хозяйстве возникла техническая задача – внедрение процесса протравливания в технологию. Решить эту задачу возможным внедрением процесса протравливания в технологическую линию переборки семенного картофеля перед посадкой, использовав при этом препарат “Максим КС”, а также использовать при посадке в поле протравливание в сошниках препаратом “Актара”, с помощью которого можно вести борьбу с почвообитающими вредителями, одним из которых является проволочник.
3.2. Описание узла и принцип его работы
В нашем случае в качестве узла подразумевается дооборудованная картофельная сажалка, на которой будут располагаться: резервуар с гидромешалкой, фильтр, регулятор-распределитель, коллектор с распылителями. На тракторе будет расположен гидронасос с защитным кожухом.
В качестве базовых элементов и деталей взято стандартное оборудование от опрыскивателя. Конструкцию кронштейна для гидронасоса необходимо разработать легкосъемной, позволяющей, в случае поломки трактора, быстро сагрегатировать сажалку с другим трактором.
Из ёмкости рабочая жидкость поступает в фильтр, очищается и поступает в насос, предполагается использовать имеющийся в хозяйстве насос мембранного типа фирмы HARDI, использующийся ранее на опрыскивателе. От насоса раствор поступает на пульт управления рабочей жидкостью, который снабжен редукционно-предохранительным, дроссельным и отсечным клапаном. Пульт управления снабжен одним подводящим, двумя отводящими патрубками к штангам и еще одним отводящим для гидромешалки, а также штуцером для присоединения манометра.
Всё оборудование соединяем между собой рукавами ПВХ и плотно обжимаем хомутами. Для защиты вращающихся частей привода гидронасоса, изготавливаем защитный кожух из листовой стали толщиной 2мм. Кожух изготавливается на базе штатной защиты вала отбора мощности трактора, только имеет большую длину и габариты. Резервуар имеет штатное крепление на которое мы дополнительно монтируем кронштейны крепления регулятора-распределителя, фильтра. На раме картофельной сажалки дополнительно устанавливается платформа для крепления ёмкости с помощью электродуговой сварки, причем сам резервуар со стандартным креплением, в случае необходимости, будет демонтируемым.
Конструкция крепления коллекторов с распылителями предусматривает регулировку угла распыла факела вдоль оси движения агрегата. На два высаживающих аппарата предусматривается один коллектор с двумя распыливающими головками и штуцером для присоединения рукава ПВХ напорной гидролинии, расположенного по центру коллектора. На рабочем месте оператора картофельной сажалки дополнительно устанавливаем кнопку для подачи звукового сигнала механизатору, а также тревоги.
3.3. Определение производительности сажалки
Во время посадки картофеля работники работают в полторы смены, т.е. время работы составляет Tобщ.=10,5ч., при этом объем выполняемой работы составляет S=11га
Чистое время в течении которого агрегат находится в работе:
Tч. = Tобщ.-Tз.-Tобс.=10,5-1,5-2,0 = 7ч., (3.1)
где Tз. – время заправки агрегата;
Tобс. – время на обслуживание оборудования;
Tобщ. – общее время работы за полторы смены.
Следовательно, фактическая производительность сажалки составляет:
га/ч., (3.2)
где S – объем выполняемой работы, га .
3.4. Анализ существующих распылителей
Распыливающие наконечники (распылители, форсунки) формируют струю жидкости в сплошной или полый конус, веер, сплошную плёнку. Распылители – наиболее ответственные части, от правильной подборки которых зависит равномерность нанесения препарата [5]. Следовательно, для дальнейшего правильного выбора распыливающего наконечника необходимо сделать анализ существующих форсунок.
Форсунки размещают на трубах-коллекторах распределительных систем, в которые насос нагнетает рабочую жидкость. В коллекторах выполнены отверстия, через которые жидкость поступает в полость распыливающей головки закрепленных на трубе-коллекторе. К головкам присоединены вкладыши распылителей, снабженные отверстиями для распыла жидкости.
По конструкции вкладышей и принципу действия различают распылители полевые, центробежные, щелевые, дефлекторные, эжекционные, центробежно-дисковые и дисковые с электрозарядкой капель [14].
Полевой распылитель составлен из пластмассового колпачка с выходным отверстием и сердечника с винтовой канавкой.
Полевые наконечники образуют струю распыленного химиката длиной 1...2 м. Наконечники обеспечивают тонкое распыление жидкости, что позволяет применять их для опрыскивания растений раствором высокой концентрации действующего вещества.
Центробежный (вихревой) распылитель снабжен камерой завихрения и вкладышем с круглым отверстием. Проходя через камеру завихрения, жидкость закручивается и выходит из отверстия вкладыша в виде полого конического факела с углом α = 60...90°. Распылители такого типа обеспе-чивают тонкое распыление жидкости.
Щелевой распылитель снабжен распыливающим вкладышем, отверстие в котором выполнено в виде узкой щели, расширяющейся в сторону выхода жидкости. Проходя под давлением через такое отверстие, жидкость распиливается, образуя плоский факел распыла в форме веера с углом α = 80...120°. Щелевые распылители дают грубую дисперсность распыла (300 мкм), но обеспечивают высокую равномерность распыла по ширине захвата.
Дефлекторный распылитель снабжен вкладышем, на конце которого выполнено выпускное отверстие, сообщающееся с осевым каналом. Дефлекторные распылители имеют большие выходные отверстия и дробят жидкость на крупные капли размером 250...400 мкм. Их применяют на штанговых опрыскивателях для внесения суспензий большими дозами.
Эжекционный распылитель состоит из корпуса, колпачка и вкладыша Корпус имеет осевой и радиальные каналы, сообщающиеся через отверстия в колпачке с атмосферой. Проходя с большой скоростью по осевому каналу, жидкость создает разрежение в осевых каналах, подсасывает через отверстия атмосферный воздух и образует жидковоздушную смесь.
Центробежно-дисковый распылитель представляет собой вращающуюся головку, составленную из одной, двух и более пар дисков. Такие распылители применяют на вентиляторных мало- и ультрамалообъемных опрыскивателях, обеспечивающих внесение жидких химикатов дозой от 1 до 100 л/га.
Дисковый распылитель с электрозарядкой капель снабжен распыливающим конусным диском, индуцирующим диском-электродом , включенным в сеть источника высокого напряжения, и подводящим трубопроводом. Заряженные частицы меньше сносятся ветром.
3.5. Обоснование выбора распылителя
Согласно рекомендациям планируемого применяемого препарата AKTARA 25WG норма внесения при протравливании дна борозды картофеля составляет 0,5 кг/га, расход рабочей жидкости 80 л/га.
Проведя анализ существующих распылителей пришли к выводу, что наиболее полно отвечать технологическим требованиям будут щелевые распылители с углом распыла α = 80...120°. Щелевые распылители дают грубую дисперсность распыла (300 мкм) и обеспечивают высокую равномерность распыла по ширине захвата. Форма факела так же наиболее полно отвечает требованиям и особенностям работы форсунки, при обработке дна борозды, ко всему прочему при этом учитывается фактор наличия данного распылителя в хозяйстве, т.к. практически все опрыскиватели работают именно на данном типе форсунок. Данные распылители иностранного производства хорошо зарекомендовали себя в процессе эксплуатации, имеют высокую степень надежности, поэтому отпадает необходимость в поиске других аналогов.
3.6. Обоснование расположения и угла наклона распылителя
Выбранный щелевой распылитель имеет форму факела в виде веера, а зона падения капель представляет собой острый эллипс. Нам необходимо произвести расчет требуемой площади падения капель, для определения выполнения условия покрытия дна борозды и клубней препаратом.
Угол распыла факела у выбранного распылителя составляет α = 80...120°, задаемся средним значением α =100°. Определяем, на какую высоту необходимо установить форсунку, чтобы её ширина захвата составила минимум 120мм. Высота подъема форсунки над поверхностью дна борозды будет равна:
Рис 3.1 Определение высоты
мм (3.4)
Следовательно, высота расположения распылителя над дном борозды, должна быть не менее 50мм, но и не более 100мм согласно конструктивных особенностей сажалки. Принимаем h=80мм.
Опытным путем установлено, что площадь падения капель представляет собой острый эллипс и имеет вид:
Рис.3.2 Форма пятна падающих капель
При данном методе распыливания и установки форсунки, обеспечивается оптимальная обработка дна борозды и околоклубневого пространства после заделки почвой, что обеспечивает эффективную защиту семенного материала от проволочников.
3.7. Расчет трубопроводов гидролинии
Вернёмся к производительности картофельной сажалки, которая составляет S=1,6 га/ч. Норма расхода разбавленного препарата составляет 80 л/га., следовательно, за час должно быть израсходовано 128 л, минутный расход распылителя при этом будет равен 128/60 =2 л/мин или это 33,3 см 3 / с. Данный расход жидкости обеспечивается четырьмя распылителями, следовательно производительность одной форсунки должна составлять 0,5 л/мин. По табличным данным, требуемым условиям удовлетворяет щелевой распылитель оранжевого цвета, расход жидкости q=0,5 обеспечивается при давлении 0,5 МПа.
На семь часов чистого времени работы потребуется 128*7=896л. разбавленного препарата. Планируется использовать в целях компактности и удобства транспортирования резервуар из под опрыскивателя объемом V=300 л3. Следовательно, в течении рабочего дня необходимо будет произвести три заправки. Неравномерность перемешивания жидкости гидромешалкой не должна превышать 2%. Для этого коэффициент циркуляции должен быть не меньше I=0,04 [3]. Для резервуара объемом V=300 л. рекомендуется использовать гидромешалку с произво-дительностью 15 л/мин. Коэффициент циркуляции будет равен:
I=Qм / Vр=0,05, (3.5)
где Qм=15 л/мин. - производительность гидромешалки,
Vр = 300л. – объем резервуара для рабочей жидкости.
Общая требуемая производительность насоса будет равна:
Q= Qм+q= 350 см 3 / с, (3.6)
где q=4 qф + qз= 6 – расход форсунки qф =2 л/мин с учетом повышения на использование другого типа-размера распылителя qз=4 л/мин.
В нашей гидравлической схеме имеются: всасывающая гидролиния от резервуара к насосу, и две нагнетательно-сливные. Исходя из допустимых скоростей [7], во всасывающей магистрали Vвс.д =1,5 м/с, нагнетательно-сливной Vн.сл.д = 3 м/с, рассчитываем значение внутренних диаметров трубопроводов гидролинии:
мм; (3.7)
где Qвс =Q =3,5•10-4 м3/с – требуемая подача насоса,
Vвс.д =1,5 м/с – допустимая скорость во всасывающей магистрали.
мм;
где Qн = Qвс =3,5•10-4 м3/с – подача насоса требуемая,
Vвс.д =3 м/с – допустимая скорость в напорной магистрали.
Принимаем диаметр всасывающей гидролинии dвс.=32 мм, нагнета-тельной dвс.=12 мм, диаметр всасывающей гидролинии выбираем исходя из условия диаметров присоединительных патрубков насоса, фильтра и резер-вуара, а также сокращения потерь давления.
Определяем потери давления гидросистемы, по длине трубопровода. По табл.2 [21] для шлангов из ПВХ при расходе 21,43 л/мин и длине трубопровода lвс.= 2м, его диаметре dвс.=32мм потери будут составлять ∆Рвс.= 0,0059 МПа, длине lн. = 3,7м и lн.=12мм - ∆Рн.= 0,0137 МПа
Местные потери давления принимаем равными 20% от потерь по длине: ∆Рм =20%•(∆Рвс+ ∆Рн)≈0,004 МПа [21].
По паспортным данным применяемых нами элементов конструкторского узла, принимаем потери давления на фильтре ∆Рф=0,035 МПа, регуляторе-распределителе ∆Рр=0,021 МПа, гидромешалки ∆Рг.=0,016 МПа.
Определяем общие потери давления в гидросистеме:
МПа, (3.8)
где ∆Рвс.= 0,0059 МПа – потери давления во всасывающей магистрали,
∆Рн.= 0,0137 МПа – потери давления в нагнетательной магистрали,
∆Рр=0,021 МПа – потери давления регулятора распределителя,
∆Рг.=0,016 МПа – потери давления гидромешалки,
∆Рм =0,004 МПа – местные потери давления,
∆Рф=0,035 МПа – потери давления фильтра.
3.8. Выбор насоса
В связи с тем, что данное технологическое оборудование планируется использовать не только в работе с препаратом Актара, при протравливании семенного картофеля перед посадкой, но и при обработке стимуляторами прорастания, а так же при работе с другими препаратами, норма расхода баковой смеси может повышаться. Поэтому фактическая подача насоса принимается больше расчетной в пределах 30% т.е. будет составлять Qрасч. = 30%Qф =30л/мин.
Выбираем мембранно-поршневой насос фирмы Hardi, наиболее полно отвечающий заданным технологическим требованиям.
Техническая характеристика насоса
n,
об/мин Расход,
л/мин Давление, МПа Мощность,
N кВт
540 42 0 0,3
540 30 1 0,9
max 800 max 1,5
Данный насос рассчитан на вращение с рабочей частотой n=540 об/мин, при этом потребляемая мощность составляет N=0,9 кВт. Данный насос предусмотрен для работы от ВОМ трактора, но импортного производства. Поэтому в наших условиях конструкцию кронштейна для гидронасоса необходимо разработать самостоятельно.
3.1. Обоснование выбора узла
Протравливание посадочного материала фунгицидами или биологи-ческими препаратами является обязательным технологическим приёмом, в первую очередь направленным против клубне- и почвообитающего гриба Rhizoctonia solani – основного возбудителя болезней проростков, столонов и клубней картофеля особенно на связных и богатых органической субстанцией и малоаэрируемых влажных почвах. Кроме снижения урожай-ности, гриб вызывает и значительное снижение товарных качеств столового картофеля [4].
На данном этапе производства картофеля в новой технологии не применяется процесс протравливание. Доказано опытным путём, что по этой причине ежегодно хозяйства недополучают валовой сбор картофеля в среднем на 20-25%. В связи с этим в хозяйстве возникла техническая задача – внедрение процесса протравливания в технологию. Решить эту задачу возможным внедрением процесса протравливания в технологическую линию переборки семенного картофеля перед посадкой, использовав при этом препарат “Максим КС”, а также использовать при посадке в поле протравливание в сошниках препаратом “Актара”, с помощью которого можно вести борьбу с почвообитающими вредителями, одним из которых является проволочник.
3.2. Описание узла и принцип его работы
В нашем случае в качестве узла подразумевается дооборудованная картофельная сажалка, на которой будут располагаться: резервуар с гидромешалкой, фильтр, регулятор-распределитель, коллектор с распылителями. На тракторе будет расположен гидронасос с защитным кожухом.
В качестве базовых элементов и деталей взято стандартное оборудование от опрыскивателя. Конструкцию кронштейна для гидронасоса необходимо разработать легкосъемной, позволяющей, в случае поломки трактора, быстро сагрегатировать сажалку с другим трактором.
Из ёмкости рабочая жидкость поступает в фильтр, очищается и поступает в насос, предполагается использовать имеющийся в хозяйстве насос мембранного типа фирмы HARDI, использующийся ранее на опрыскивателе. От насоса раствор поступает на пульт управления рабочей жидкостью, который снабжен редукционно-предохранительным, дроссельным и отсечным клапаном. Пульт управления снабжен одним подводящим, двумя отводящими патрубками к штангам и еще одним отводящим для гидромешалки, а также штуцером для присоединения манометра.
Всё оборудование соединяем между собой рукавами ПВХ и плотно обжимаем хомутами. Для защиты вращающихся частей привода гидронасоса, изготавливаем защитный кожух из листовой стали толщиной 2мм. Кожух изготавливается на базе штатной защиты вала отбора мощности трактора, только имеет большую длину и габариты. Резервуар имеет штатное крепление на которое мы дополнительно монтируем кронштейны крепления регулятора-распределителя, фильтра. На раме картофельной сажалки дополнительно устанавливается платформа для крепления ёмкости с помощью электродуговой сварки, причем сам резервуар со стандартным креплением, в случае необходимости, будет демонтируемым.
Конструкция крепления коллекторов с распылителями предусматривает регулировку угла распыла факела вдоль оси движения агрегата. На два высаживающих аппарата предусматривается один коллектор с двумя распыливающими головками и штуцером для присоединения рукава ПВХ напорной гидролинии, расположенного по центру коллектора. На рабочем месте оператора картофельной сажалки дополнительно устанавливаем кнопку для подачи звукового сигнала механизатору, а также тревоги.
3.3. Определение производительности сажалки
Во время посадки картофеля работники работают в полторы смены, т.е. время работы составляет Tобщ.=10,5ч., при этом объем выполняемой работы составляет S=11га
Чистое время в течении которого агрегат находится в работе:
Tч. = Tобщ.-Tз.-Tобс.=10,5-1,5-2,0 = 7ч., (3.1)
где Tз. – время заправки агрегата;
Tобс. – время на обслуживание оборудования;
Tобщ. – общее время работы за полторы смены.
Следовательно, фактическая производительность сажалки составляет:
га/ч., (3.2)
где S – объем выполняемой работы, га .
3.4. Анализ существующих распылителей
Распыливающие наконечники (распылители, форсунки) формируют струю жидкости в сплошной или полый конус, веер, сплошную плёнку. Распылители – наиболее ответственные части, от правильной подборки которых зависит равномерность нанесения препарата [5]. Следовательно, для дальнейшего правильного выбора распыливающего наконечника необходимо сделать анализ существующих форсунок.
Форсунки размещают на трубах-коллекторах распределительных систем, в которые насос нагнетает рабочую жидкость. В коллекторах выполнены отверстия, через которые жидкость поступает в полость распыливающей головки закрепленных на трубе-коллекторе. К головкам присоединены вкладыши распылителей, снабженные отверстиями для распыла жидкости.
По конструкции вкладышей и принципу действия различают распылители полевые, центробежные, щелевые, дефлекторные, эжекционные, центробежно-дисковые и дисковые с электрозарядкой капель [14].
Полевой распылитель составлен из пластмассового колпачка с выходным отверстием и сердечника с винтовой канавкой.
Полевые наконечники образуют струю распыленного химиката длиной 1...2 м. Наконечники обеспечивают тонкое распыление жидкости, что позволяет применять их для опрыскивания растений раствором высокой концентрации действующего вещества.
Центробежный (вихревой) распылитель снабжен камерой завихрения и вкладышем с круглым отверстием. Проходя через камеру завихрения, жидкость закручивается и выходит из отверстия вкладыша в виде полого конического факела с углом α = 60...90°. Распылители такого типа обеспе-чивают тонкое распыление жидкости.
Щелевой распылитель снабжен распыливающим вкладышем, отверстие в котором выполнено в виде узкой щели, расширяющейся в сторону выхода жидкости. Проходя под давлением через такое отверстие, жидкость распиливается, образуя плоский факел распыла в форме веера с углом α = 80...120°. Щелевые распылители дают грубую дисперсность распыла (300 мкм), но обеспечивают высокую равномерность распыла по ширине захвата.
Дефлекторный распылитель снабжен вкладышем, на конце которого выполнено выпускное отверстие, сообщающееся с осевым каналом. Дефлекторные распылители имеют большие выходные отверстия и дробят жидкость на крупные капли размером 250...400 мкм. Их применяют на штанговых опрыскивателях для внесения суспензий большими дозами.
Эжекционный распылитель состоит из корпуса, колпачка и вкладыша Корпус имеет осевой и радиальные каналы, сообщающиеся через отверстия в колпачке с атмосферой. Проходя с большой скоростью по осевому каналу, жидкость создает разрежение в осевых каналах, подсасывает через отверстия атмосферный воздух и образует жидковоздушную смесь.
Центробежно-дисковый распылитель представляет собой вращающуюся головку, составленную из одной, двух и более пар дисков. Такие распылители применяют на вентиляторных мало- и ультрамалообъемных опрыскивателях, обеспечивающих внесение жидких химикатов дозой от 1 до 100 л/га.
Дисковый распылитель с электрозарядкой капель снабжен распыливающим конусным диском, индуцирующим диском-электродом , включенным в сеть источника высокого напряжения, и подводящим трубопроводом. Заряженные частицы меньше сносятся ветром.
3.5. Обоснование выбора распылителя
Согласно рекомендациям планируемого применяемого препарата AKTARA 25WG норма внесения при протравливании дна борозды картофеля составляет 0,5 кг/га, расход рабочей жидкости 80 л/га.
Проведя анализ существующих распылителей пришли к выводу, что наиболее полно отвечать технологическим требованиям будут щелевые распылители с углом распыла α = 80...120°. Щелевые распылители дают грубую дисперсность распыла (300 мкм) и обеспечивают высокую равномерность распыла по ширине захвата. Форма факела так же наиболее полно отвечает требованиям и особенностям работы форсунки, при обработке дна борозды, ко всему прочему при этом учитывается фактор наличия данного распылителя в хозяйстве, т.к. практически все опрыскиватели работают именно на данном типе форсунок. Данные распылители иностранного производства хорошо зарекомендовали себя в процессе эксплуатации, имеют высокую степень надежности, поэтому отпадает необходимость в поиске других аналогов.
3.6. Обоснование расположения и угла наклона распылителя
Выбранный щелевой распылитель имеет форму факела в виде веера, а зона падения капель представляет собой острый эллипс. Нам необходимо произвести расчет требуемой площади падения капель, для определения выполнения условия покрытия дна борозды и клубней препаратом.
Угол распыла факела у выбранного распылителя составляет α = 80...120°, задаемся средним значением α =100°. Определяем, на какую высоту необходимо установить форсунку, чтобы её ширина захвата составила минимум 120мм. Высота подъема форсунки над поверхностью дна борозды будет равна:
Рис 3.1 Определение высоты
мм (3.4)
Следовательно, высота расположения распылителя над дном борозды, должна быть не менее 50мм, но и не более 100мм согласно конструктивных особенностей сажалки. Принимаем h=80мм.
Опытным путем установлено, что площадь падения капель представляет собой острый эллипс и имеет вид:
Рис.3.2 Форма пятна падающих капель
При данном методе распыливания и установки форсунки, обеспечивается оптимальная обработка дна борозды и околоклубневого пространства после заделки почвой, что обеспечивает эффективную защиту семенного материала от проволочников.
3.7. Расчет трубопроводов гидролинии
Вернёмся к производительности картофельной сажалки, которая составляет S=1,6 га/ч. Норма расхода разбавленного препарата составляет 80 л/га., следовательно, за час должно быть израсходовано 128 л, минутный расход распылителя при этом будет равен 128/60 =2 л/мин или это 33,3 см 3 / с. Данный расход жидкости обеспечивается четырьмя распылителями, следовательно производительность одной форсунки должна составлять 0,5 л/мин. По табличным данным, требуемым условиям удовлетворяет щелевой распылитель оранжевого цвета, расход жидкости q=0,5 обеспечивается при давлении 0,5 МПа.
На семь часов чистого времени работы потребуется 128*7=896л. разбавленного препарата. Планируется использовать в целях компактности и удобства транспортирования резервуар из под опрыскивателя объемом V=300 л3. Следовательно, в течении рабочего дня необходимо будет произвести три заправки. Неравномерность перемешивания жидкости гидромешалкой не должна превышать 2%. Для этого коэффициент циркуляции должен быть не меньше I=0,04 [3]. Для резервуара объемом V=300 л. рекомендуется использовать гидромешалку с произво-дительностью 15 л/мин. Коэффициент циркуляции будет равен:
I=Qм / Vр=0,05, (3.5)
где Qм=15 л/мин. - производительность гидромешалки,
Vр = 300л. – объем резервуара для рабочей жидкости.
Общая требуемая производительность насоса будет равна:
Q= Qм+q= 350 см 3 / с, (3.6)
где q=4 qф + qз= 6 – расход форсунки qф =2 л/мин с учетом повышения на использование другого типа-размера распылителя qз=4 л/мин.
В нашей гидравлической схеме имеются: всасывающая гидролиния от резервуара к насосу, и две нагнетательно-сливные. Исходя из допустимых скоростей [7], во всасывающей магистрали Vвс.д =1,5 м/с, нагнетательно-сливной Vн.сл.д = 3 м/с, рассчитываем значение внутренних диаметров трубопроводов гидролинии:
мм; (3.7)
где Qвс =Q =3,5•10-4 м3/с – требуемая подача насоса,
Vвс.д =1,5 м/с – допустимая скорость во всасывающей магистрали.
мм;
где Qн = Qвс =3,5•10-4 м3/с – подача насоса требуемая,
Vвс.д =3 м/с – допустимая скорость в напорной магистрали.
Принимаем диаметр всасывающей гидролинии dвс.=32 мм, нагнета-тельной dвс.=12 мм, диаметр всасывающей гидролинии выбираем исходя из условия диаметров присоединительных патрубков насоса, фильтра и резер-вуара, а также сокращения потерь давления.
Определяем потери давления гидросистемы, по длине трубопровода. По табл.2 [21] для шлангов из ПВХ при расходе 21,43 л/мин и длине трубопровода lвс.= 2м, его диаметре dвс.=32мм потери будут составлять ∆Рвс.= 0,0059 МПа, длине lн. = 3,7м и lн.=12мм - ∆Рн.= 0,0137 МПа
Местные потери давления принимаем равными 20% от потерь по длине: ∆Рм =20%•(∆Рвс+ ∆Рн)≈0,004 МПа [21].
По паспортным данным применяемых нами элементов конструкторского узла, принимаем потери давления на фильтре ∆Рф=0,035 МПа, регуляторе-распределителе ∆Рр=0,021 МПа, гидромешалки ∆Рг.=0,016 МПа.
Определяем общие потери давления в гидросистеме:
МПа, (3.8)
где ∆Рвс.= 0,0059 МПа – потери давления во всасывающей магистрали,
∆Рн.= 0,0137 МПа – потери давления в нагнетательной магистрали,
∆Рр=0,021 МПа – потери давления регулятора распределителя,
∆Рг.=0,016 МПа – потери давления гидромешалки,
∆Рм =0,004 МПа – местные потери давления,
∆Рф=0,035 МПа – потери давления фильтра.
3.8. Выбор насоса
В связи с тем, что данное технологическое оборудование планируется использовать не только в работе с препаратом Актара, при протравливании семенного картофеля перед посадкой, но и при обработке стимуляторами прорастания, а так же при работе с другими препаратами, норма расхода баковой смеси может повышаться. Поэтому фактическая подача насоса принимается больше расчетной в пределах 30% т.е. будет составлять Qрасч. = 30%Qф =30л/мин.
Выбираем мембранно-поршневой насос фирмы Hardi, наиболее полно отвечающий заданным технологическим требованиям.
Техническая характеристика насоса
n,
об/мин Расход,
л/мин Давление, МПа Мощность,
N кВт
540 42 0 0,3
540 30 1 0,9
max 800 max 1,5
Данный насос рассчитан на вращение с рабочей частотой n=540 об/мин, при этом потребляемая мощность составляет N=0,9 кВт. Данный насос предусмотрен для работы от ВОМ трактора, но импортного производства. Поэтому в наших условиях конструкцию кронштейна для гидронасоса необходимо разработать самостоятельно.
Похожие материалы
Модернизация рабочего органа картофелесажалки СН-4Б (конструкторская часть дипломного проекта + чертеж)
AgroDiplom
: 3 ноября 2020
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1. Анализ технологии производства картофеля
Как показал анализ хозяйственной деятельности КФК Лысенко С.К. площади под картофель расширяются и за три года они увеличились в 2,4 раза. Урожайность картофеля достигла 190 ц/га, но вместе с этим увеличились затраты труда и средств. В хозяйстве наблюдается снижение числа работников, что делает невозможным наращивание производства картофеля. Поэтому, чтобы сохранить рост производства картофеля, необходимо изыскивать технолог
999 руб.
Съемник шестерни распредвала (конструкторская часть дипломного проекта + чертеж)
kurs9
: 7 июня 2021
Содержание
3. Конструкторский раздел...........................17
3.1. Назначение, устройство и работа приспособления........17
3.2. Расчет приспособления...............................17
3 Конструкторский раздел
3.1 Назначение, устройство и работа приспособления
Приспособление предназначено для снятия шестерни привода распределительного вала.
Приспособление изготовлено из среднеуглеродистой легированной стали 45 ГОСТ 1050-88 и состоит из корпуса 1,вала 2,захватов 3,наконечников 4,ручки
999 руб.
Установка для очистки отработанного масла (конструкторская часть дипломного проекта + чертеж)
AgroDiplom
: 8 февраля 2022
5. Конструкторская разработка
5.1. Обоснование выбора конструкции
Изменение качественных показателей моторных масел имеет общую закономерность: все они подвергаются комплексному воздействию высоких температур, кислорода, поступающего из воздуха, в них накапливаются механические примеси, вода, топливо, то есть масло при работе постоянно загрязняется. К веществам загрязняющим моторное масло, относятся [1]:
- продукты окисления и термического разложения углеводородов;
- продукты несгоревшег
999 руб.
Модернизация культиватора КОН-2.8А (конструкторская часть дипломного проекта + чертеж)
AgroDiplom
: 27 января 2022
Содержание
3 КОНСТРУИРОВАНИЕ КУЛЬТИВАТОРА ДЛЯ МЕЖДУРЯДНОЙ ОБРАБОТКИ КАРТОФЕЛЯ
3.1 Краткий обзор машин для междурядной обработки картофеля
3.2 Описание разработки
3.3 Прочностной расчет конструкции культиватора
3.3.1 Расчет несущей балки рамы...
3.3.2 Расчет швеллера рамного...
3.3.3 Расчет сварочного шва на отрыв...
3.4 Технико-экономические показатели конструкторской разработки ...
3.6 Разработка операционно-технологической карты на междурядную обработку картофеля
3 КОНСТРУИРОВ
999 руб.
Модернизация картофелесажалки СКМ-4 (конструкторская часть дипломного проекта + чертеж)
maobit
: 1 декабря 2021
Картофелесажалка СКМ-4 производится по лицензии широко известного немецкого производителя Cramer
Конструктивно четырехрядная картофелесажалка СКМ-4 является аналогом флагмана модельного ряда картофелесажалок Cramer – MARATHON JUMBO.
Картофелесажалка предназначена для посадки не проросшего и слабо проросшего картофеля в предварительно нарезанные гребни или по маркеру. Параллелограмный механизм и индивидуальное копирование рельефа сошником обеспечивают точную и равномерную посадку картофел
999 руб.
Модернизация сеялки СЗК-3,6 (конструкторская часть дипломного проекта + чертеж)
AgroDiplom
: 2 июня 2021
Сеялка зернотуковая комбинированная СЗК-3,6 предназначена для рядового посева зерновых и зернобобовых культур с одновременным внесением полной дозы минеральных удобрений. Сеялка обеспечивает высев различных норм семян зерновых (пшеница, рожь, ячмень, овес), зернобобовых (горох, соя, вика, люпин), крупяных (просо, гречиха) и других культур, близких к вышеперечисленным по размерам семян и нормам высева, с одновременным внесением в засеваемые рядки стартовой дозы (25...250 кг/га) и в междурядьях —
999 руб.
Модернизация подъемника для вывешивания автомобиля. (Конструкторская часть дипломного проекта + чертеж)
kurs9
: 2 апреля 2021
В ходе работы над проектом была разработана конструкция балансирного подъемника для вывешивания автомобиля. Данный подъемник может быть использован в шиномонтажном цехе автотранспортного предприятия.
Тип и конструкция подъемника были выбраны в результате анализа существующих конструкций подъемного оборудования, как механизированного с электрическим и гидравлическим приводом, так и с использованием ручного труда.
В качестве прототипа была использована оригинальная конструкция подъемника, в кото
999 руб.
Модернизация сеялки СПУ-6 (конструкторская часть дипломного проекта + чертеж)
AgroDiplom
: 15 декабря 2020
Содержание
1. Описание выбранной технологической схемы
2. Описание технологического процесса работы модернизируемой машины СПУ-6
3. Обоснование модернизации
4. Расчет технологических, конструктивных, энергетических и эксплуатационных параметров модернизируемой машины
5. Технологический расчет рабочих органов
6. Прочностные расчеты
7. Расчет операционно-технологической карты на посев ячменя
Список использованных источников
2.4 Описание технологического процесса работы модернизиру
999 руб.
Другие работы
Побудова надійних операційних систем, що допускають наявність ненадійних драйверів пристроїв
Qiwir
: 5 октября 2013
Введення
Найбільш гострою проблемою багатьох користувачів є ненадійність комп'ютерів.
Дослідники у галузі комп'ютерної науки звикли до регулярних збоїв комп'ютерів і до необхідності через кожні кілька місяців встановлювати патчі програмного забезпечення. Проте переважна більшість користувачів вважає це відсутність надійності неприйнятним. Їхня внутрішня модель роботи електронного пристрою ґрунтується на досвіді використання телевізорів і відеомагнітофонів: ви купуєте пристрій, підключаєте його д
10 руб.
Лабораторная работа №3 Основы компьютерных технологий. ВАРИАНТ №1
KVASROGOV
: 31 мая 2020
Лабораторная работа №3
По дисциплине: Основы компьютерных технологий
ВАРИАНТ 01
100 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) 3-й вариант. Лабораторные
MayaMy
: 23 февраля 2019
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1)
Вид работы: Лабораторная работа 3(1 и 2)
Оценка:Зачет
Дата оценки: 23.12.2018
Рецензия:Уважаемая ,
Галкина Марина Юрьевна
850 руб.
Экзамен по дисциплине: Архитектура телекоммуникационных систем и сетей. Билет №12
IT-STUDHELP
: 13 сентября 2023
Билет 12
1. Относительная фазовая модуляция. Формирование ОФМ-сигнала. Когерентный и не когерентный прием. Многопозиционная и амплитудно-фазовая модуляции.
2. Среды передачи, используемые в компьютерных сетях. Их характеристики и возможности.
3. За время испытаний 2 часа, при скорости модуляции 600 бод было ошибочно принято 10 единичных элементов. Все элементы сгруппированы в кодовые комбинации по 8 элементов. Определить коэффициенты ошибок по единичным элементам и кодовым комбинациям.
=====
350 руб.