Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен.
Состав работы
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание экзамена на скриншоте.
Билет №15
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
Билет №15
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 04.10.2017
Рецензия:Уважаемый ,
поздравляю Вас с успешным завершением курса ТСВПиС.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 04.10.2017
Рецензия:Уважаемый ,
поздравляю Вас с успешным завершением курса ТСВПиС.
Галкина Марина Юрьевна
Похожие материалы
Экзамен. Билет-15.Теория сложности вычислительных процессов и структур
Madam
: 25 сентября 2018
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
50 руб.
Экзамен. Теория сложностей вычислительных процессов и структур. Билет 15
Fayst13
: 25 октября 2015
Экзамен Теория сложностей вычислительных процессов и структур Билет 15
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
250 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15.
teacher-sib
: 30 апреля 2021
Билет №15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: .
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
250 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №15
IT-STUDHELP
: 7 января 2021
Билет No15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×4],M2[4×8],M3[8×2],M4[2×6],M5[6×7].
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
070123
700652
000050
160063
255607
320370
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Другие работы
Гидравлика Задача 13.34 Вариант 04
Z24
: 7 января 2026
В приводах многих машин (прессах, бульдозерах, скреперах подъемниках, станках) применяется схема гидропривода, изображенная на рисунке:
Гидропривод состоит из бака масляного Б, насоса Н, обратного клапана КО, гидрораспределителя Р, гидроцилиндров ГЦ, трубопроводов, предохранительного клапана КП, фильтра Ф.
Значения усилия на штоке F, скорости перемещения рабочего органа (поршня) V, рабочего давления в гидроприводе p и длины трубопроводов l приведены в таблице 2.
Для заданной гидросхемы
350 руб.
Аналіз зовнішньоекономічної діяльності Іспанії
DocentMark
: 11 сентября 2013
Зміст
Вступ
1. Розвиток економіки та її стабілізація
2. Зовнішньо-економічна діяльність
Висновки
Список використаної літератури
Вступ
Актуальність теми
Іспанія - країна Західної Європи. Піднесення Іспанії після Другої світової війни пов'язане із значним розширенням внутрішнього ринку, масовим оновленням і зростанням основного капіталу.
У перше післявоєнне десятиліття економічна політика проводилася під знаком соціального ринкового господарства з метою з'єднати конкуренцію, приватну і
25 руб.
Лабораторная работа №1.4 «Упрощенная процедура обработки результатов прямых измерений с многократными наблюдениями» .Вариант №60
quarantine69
: 15 января 2022
1. Цель работы.
Ознакомление с упрощенной процедурой обработки результатов прямых измерений с многократными наблюдениями. Получение, применительно к упрощенной процедуре, навыков обработки результатов наблюдений, оценка погрешностей результатов измерений и планирование количества наблюдений.
Таблица 1. Исходные данные к задаче лабораторной работы 1.4
Предпоследняя цифра пароля: 6
i, номера наблюдений: 6 - 10
Последняя цифра пароля: 0
Р - доверительная вероятность: 0,999
Класс точности СИ, Y %: 0
150 руб.
Теория электрических цепей (часть 1). Контрольная работа, вариант 01.
nik200511
: 27 февраля 2023
Задача 3.1. В момент времени t=0 происходит переключение ключа K, в результате чего в цени возникает переходный процесс.
1. Перерисуйте схему для вашего варианта.
2. Выпишите числовые данные.
3. Рассчитайте все токи и напряжения на С или L в три момента времени t.
4. Рассчитайте классическим методом переходный процесс в виде UC(t), i2(t), i3(t) в схемах 1-5, UL(t), i2(t), i3(t) в схемах 6-10. Проверьте правильность расчетов, выполненных в п.4, путем сопоставления их с результатами расчетов в п
20 руб.