Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен.
Состав работы
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание экзамена на скриншоте.
Билет №15
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
Билет №15
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 04.10.2017
Рецензия:Уважаемый ,
поздравляю Вас с успешным завершением курса ТСВПиС.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 04.10.2017
Рецензия:Уважаемый ,
поздравляю Вас с успешным завершением курса ТСВПиС.
Галкина Марина Юрьевна
Похожие материалы
Экзамен. Билет-15.Теория сложности вычислительных процессов и структур
Madam
: 25 сентября 2018
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
50 руб.
Экзамен. Теория сложностей вычислительных процессов и структур. Билет 15
Fayst13
: 25 октября 2015
Экзамен Теория сложностей вычислительных процессов и структур Билет 15
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
250 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15.
teacher-sib
: 30 апреля 2021
Билет №15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: .
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
250 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №15
IT-STUDHELP
: 7 января 2021
Билет No15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×4],M2[4×8],M3[8×2],M4[2×6],M5[6×7].
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
070123
700652
000050
160063
255607
320370
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Другие работы
Расчет аналоговых и дискретных устройств связи. Вариант 9.
StanSlaw
: 23 октября 2018
Вариант 9
Целью курсовой работы является систематизация и закрепление знаний, полученных при изучении курса теории цепей.
В процессе самостоятельной работы студенты должны спроектировать дискретный фильтр, выделяющий одну из гармоник, полученных на выходе нелинейного преобразователя. Устройство, которое необходимо разработать, содержит как аналоговую, так и дискретную части.
Аналоговая часть схемы содержит автогенератор, вырабатывающий исходное (задающее) колебание; нелинейный преобразователь, и
800 руб.
Разработка трансляционного ДСКВ приемника - Курсовой проект по дисциплине: Радиоприемные устройства систем радиодоступа и радиосвязи. Вариант 12
Roma967
: 14 декабря 2023
«Разработка трансляционного ДСКВ приемника»
Содержание
Исходные данные на курсовой проект 3
Введение 4
1. Предварительный расчет структурной схемы проектируемого приемника 5
1.1 Общая структурная схема приемника 5
1.2 Расчет полосы пропускания преселектора 5
1.3 Расчет числа контуров преселектора и эквивалентной добротности 7
1.4 **Выбор типа и количества фильтров тракта ПЧ 11
1.5 Выбор типа АИМС 13
1.6 Расчет необходимого усиления приемника 15
1.7 Расчет реальной чувствительности приемника 16
1500 руб.
Организация полиграфического производства
Elfa254
: 22 октября 2013
1. Технологическая схема изготовления продукции…………………6
2. Организация подготовки изданий к производству в печатном цехе полиграфического предприятия………………………………..…13
2.1. Расчет годовой производительности единицы печатного оборудования в зависимости от среднегодового тиража издания...........................................................................................................13
2.2. Расчет себестоимости изготовления учетной единицы продукции………………………………………………………………… 17
20 руб.
Финансовые показатели эффективности производства
evelin
: 8 ноября 2013
Содержание
Введение
1. Оценка эффективности производства в отчетном периоде по сравнению с предыдущим
1.1 Качество обслуживания потребителей услугами телефонной связи, степень удовлетворения потребностей в данном виде услуг
1.2 Использование ресурсов предприятия
1.3 Себестоимость услуг. Влияние изменения производительности труда и фондоотдачи на себестоимость
1.4 Финансовые показатели - прибыль и рентабельность
2. Определение дополнительного количества телефонных аппаратов на сети
3. Ист
5 руб.