Электропитание устройств и систем телекоммуникаций. Вариант № 03
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
1. Рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип; найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство; выбрать вводный шкаф; рассчитать заземляющее устройство и выбрать автомат защиты.
- составить функциональную схему системы электропитания и перечень элементов с указанием всех типов выбранного оборудования
Исходные данные к расчету
Предпоследняя цифра пароля 0 Последняя цифра пароля 3
Напряжение питания основного канала цепи постоянного тока, U0, В 60 Удельное сопротивление грунта,
r0, Ом×м /7,14/ 6
Максимальный ток нагрузки, I0, А 400 Длина шинопровода (кабеля) lф, км
1,5
Ток аварийного освещения, IОСВ, А 5 Место прокладки шинопровода (кабеля) воздух
Полная мощность потребления на хозяйственные нужды, SХОЗ , кВА 5 Первичная сеть трехфазная, четырехпроводная, UФ=220В, fС=50Гц по ГОСТ 13.109 - 97
Коэффициент мощности нагрузки на хоз. нужды, cosjхн , отн.ед. 0,97
Время разряда аккумуляторных батарей,
tр , час 3
Рабочая температура окр. среды, tср, ̊ С +20
3. Рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип
4. Найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство
5. Расчет заземляющего устройства
6. Выбор автомата защиты
7. Выбор дизель-генераторной установки.
8. Составляем функциональную схему ЭПУ и перечень элементов с указанием типов всех, используемых устройств.
______________________________
1 ЗАДАНИЕ И ОБЩИЕ УКАЗАНИЯ ПО ОФОРМЛЕНИЮ
КОНТРОЛЬНОЙ РАБОТЫ
В контрольной работе необходимо выполнить следующее:
- рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип; найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство; выбрать вводный шкаф; рассчитать заземляющее устройство и выбрать автомат защиты.
- составить функциональную схему системы электропитания (см. рис. П1) и перечень элементов с указанием всех типов выбранного оборудования (рис. П2).
Исходные данные к расчету выбираются из таблиц 1 и 2 в соответствии с номером зачётной книжки.
Контрольная работа выполняется в обычной ученической тетради (или на листах формата А4). Она должна быть аккуратно оформлена, разборчиво написана на одной стороне каждого листа, т.е. на правой странице развернутой тетради. Левая страница должна быть оставлена чистой, так как она предназначена для внесения студентами исправлений и дополнений по результатам рецензии.
Для замечаний преподавателя на каждой странице тетради необходимо оставлять поля шириной 3...4 см. Все страницы нумеруются.
На обложке тетради следует наклеить заполненный адресный бланк, а на первой странице тетради должен быть титульный лист с указанием номера варианта.
КОНТРОЛЬНАЯ РАБОТА ДОЛЖНА ОБЯЗАТЕЛЬНО СОДЕРЖАТЬ:
- исходные данные к расчету;
- 4 -
Таблица 1 - Варианты задания
Предпоследняя цифра номера зачетной книжки 0 1 2 3 4 5 6 7 8 9
Напряжение питания основного канала цепи по-стоянного тока, U0, В 60 48 24 48 60 24 60 48 24 48
Максимальный ток нагрузки, I0, А 400 500 700 300 1000 450 750 450 550 650
Ток аварийного освещения, IОСВ, А 5 3 4 4,5 3,5 2,8 1,9 2,7 3,2 4,7
Полная мощность потребления на хозяйственные нужды, SХОЗ , кВА 5 6 7 8 10 3 4 3,5 5 4
Коэффициент мощности нагрузки на хоз. нужды, cos хн , отн.ед. 0,97 0,93 0,9 0,95 0,98 0,94 0,92 0,91 0,96 0,89
Время разряда аккумуляторных батарей,
tр , час 3 5 1 3 5 1 3 5 1 3
Рабочая температура окр. среды, tср, ̊ С +20 +18 +10 +12 +25 +20 +18 +15 +10 +12
Таблица 2 - Варианты задания
Последняя цифра номера зачетной книжки 0 1 2 3 4 5 6 7 8 9
Удельное сопротивление грунта,
0, Омм /7,14/ 20 30 10 6 40 30 20 80 50 40
Длина шинопровода (кабеля) l ф, км
1,0 1,9 2,0 1,5 0,9 2,1 3,0 1,7 1,6 2,6
Место прокладки шинопровода
(кабеля) земля воздух земля воздух земля воздух земля воздух земля воздух
Первичная сеть трехфазная, четырехпроводная, UФ=220В, fС=50Гц по ГОСТ 13.109 - 97
- описание буферной системы электропитания, которая будет рассчитываться;
- расчетные формулы привести в общем виде и с подставленными в системе СИ численными значениями величин;
- схемы и графики должны соответствовать требованиям ЕСКД (чертежи могут быть выполнены карандашом);
- все рисунки, графики, чертежи и таблицы должны быть пронумерованы;
- в конце контрольной работы привести перечень элементов схемы, выполненный в соответствии с требованиями ЕСКД;
- список литературы;
- работа должна быть подписана и указана дата.
Допускается выполнение контрольной работы с помощью средств вычисли-тельной техники.
Получив контрольную работу с рецензией преподавателя, студент должен ознакомиться со всеми замечаниями, исправить отмеченные ошибки и письменно ответить на все поставленные преподавателем вопросы.
В том случае, если контрольная работа выполнена неудовлетворительно и возвращена студенту, необходимо внести в неё исправления или выполнить задание заново в соответствии с указаниями преподавателя, после чего её следует снова выслать для повторной проверки вместе с незачтённой ранее работой.
2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ
КОНТРОЛЬНОЙ РАБОТЫ
2.1 Структурная схема энергоснабжения предприятия связи.
Схемы бесперебойного электроснабжения
Предприятия электросвязи относятся к потребителям первой категории и их энергоснабжение должно обеспечиваться от трех независимых источников. Два внешних ввода должны быть от отдельных электростанций, а третий – от собст-венной дизельной электростанции.
Система электроснабжения – это комплекс сооружений на территории предприятия связи и в производственных помещениях, обеспечивающий функ-ционирование предприятия связи, как в нормальных, так и в аварийных режимах его работы. Структурная схема электроснабжения предприятия связи приведена на рисунке 1.
Схема включает в себя такие устройства:
- трансформаторные подстанции (ТП1 и ТП2);
- дизель – генераторную установку (ДГУ);
- автомат ввода резерва (АВР);
- шкаф вводный распределительный переменного тока (ШВР);
- электропитающую установку (ЭПУ);
- систему вентиляции и кондиционирования (СВ и К);
- электросети освещения;
- систему мониторинга и управления (СМ и У).
- 6 -
Рисунок 1 – Структурная схема электроснабжения предприятия связи
Трансформаторная подстанция обеспечивает понижение напряжения от (6...10) кВ до 220/380 В трехфазного переменного тока промышленной частоты 50 Гц. Вторичные цепи трансформаторов подстанций должны быть включены по схеме звезда с нулевым проводом и иметь систему заземления.
АВР - автомат ввода резерва, осуществляет переключение на резервный ввод 2 (фидер) в случае пропадания напряжения на основном вводе 1 (фидере). При пропадании напряжения на обоих фидерах осуществляется подключение дизель- генераторной установки (ДГУ). Ее запуск выполняется автоматически сжатым воздухом или с помощью электрического стартера. Запуск дизеля должен произойти за (1...3) минуты. Разрешается запускать его с помощью стартера до 3-х раз (по 5...6 с). Это обусловлено возможностью выхода из строя стартерных аккумуляторов. Мощность ДГУ лежит в пределах от 8 до 1500 кВт. В системах электроснабжения чаще всего используется два ДГУ, один – основной, другой – резервный.
ШВР – шкаф вводный распределительный обеспечивает ввод и распределение энергии по потребителям с помощью различных токоведущих шин, а также защиту потребителей от перегрузок по напряжению и токов короткого замыкания. На передней панели ШВР расположены измерительные приборы для контроля коэффициента мощности (cosj) и полной потребляемой мощности (S), а также автоматы защиты. Иногда в ШВР монтируют и АВР.
Система вентиляции и кондиционирования воздуха (СВ и К) обеспечивает нормальное функционирование (что также повышает надежность системы) ЭПУ,
ДГУ, аккумуляторных батарей. СВ и К регулирует температурный режим отдельных устройств. При зарядке аккумуляторной батареи происходит выделение газов в окружающую среду, поэтому необходимо производить очистку воздуха для обеспечения нормальной жизнедеятельности персонала. СВ и К обеспечивает циркуляцию воздуха и его очистку от вредных примесей.
- 7 -
Система мониторинга и управления осуществляет контроль состояния всех основных узлов и передачу этой информации в сервисный центр. Для этого используется контроллер (устройство логического управления) и модем для передачи информации по телефонным каналам.
Электропитающая установка – это комплекс устройств, предназначенных для распределения электрической энергии, её регулирования, резервирования, стабилизации и контроля качества питающих напряжений. Она включает в себя основное и резервное выпрямительные устройства (ВУ), инверторы (И) и конверторы (К) напряжения, аккумуляторную батарею (АБ), токораспределительную сеть (ТРС) и систему заземления.
ВУ – выпрямительное устройство - преобразует напряжение переменного тока в напряжение постоянного тока и может состоять из нескольких параллельно включенных выпрямителей для увеличения тока нагрузки. ВУ могут работать в двух режимах: в режиме стабилизации напряжения для питания аппаратуры связи и подзарядки АБ (нормальный режим); в режиме стабилизации тока заряда АБ после их разряда на нагрузку в условиях отсутствия напряжения переменного тока (аварийный режим).
И - инвертор напряжения - преобразует напряжение постоянного тока в напряжение переменного тока заданной частоты прямоугольной или синусоидальной формы и обеспечивает его стабилизацию.
К - конвертор напряжения – преобразует постоянное напряжение одного уровня в постоянное напряжение другого уровня. Конвертор напряжения включает в себя инвертор напряжения и выпрямитель. Промежуточным звеном является высокочастотный трансформатор. Конвертор напряжения может выполнять одну из двух функций в системе электропитания:
- формировать дополнительные градации (уровни) напряжения;
- обеспечивать вольтодобавку к аккумуляторной батарее при ее разряде в аварийном режиме работы.
АБ - аккумуляторная батарея – химический источник постоянного тока. Используется в качестве резервного источника энергии в аварийном режиме до момента запуска ДГУ. После аварии происходит восстановление элементов АБ в режиме стабилизации тока от одного из источников переменного тока.
Получение бесперебойного энергоснабжения на стороне постоянного тока может быть обеспечено различными способами.
На предприятиях связи используются пять модификаций системы: буферная система электропитания; буферная система электропитания с вольтодобавочным конвертором (ВДК); буферная система с конвертором; система с отделенной от нагрузки АБ; безаккумуляторная система. Они представлены на рисунках 2...6.
В буферной системе электропитания АБ постоянно подключена к нагрузке (рис. 2).
Рисунок 2 – Буферная система электропитания
Преимуществом буферных систем электропитания является использование сглаживающих свойств АБ, что значительно уменьшает габаритные размеры сглаживающих фильтров, установленных на выходе ВУ. Недостатком данной системы является воздействие импульсной нагрузки на АБ, что снижает срок службы, особенно герметичных аккумуляторов в нормальном режиме работы. При повышенных требованиях к качественным показателям напряжения питания и длительной работе от АБ в аварийных режимах используется буферная система питания с вольтодобавочным конвертором – ВДК (рис.3).
Рисунок 3 – Буферная система электропитания с ВДК
В нормальном режиме контактор К1 разомкнут, элементы АБ поддерживаются в нормальном состоянии от ВУ. Одновременно обеспечивается питание основного оборудования от выпрямителя. В аварийном режиме замыкается контактор К1 и выход ВДК соединяется последовательно с АБ, вход ВДК при этом подключается к АБ. При разряде АБ ВДК добавляет недостающую долю напряжения для обеспечения постоянства напряжения на нагрузке. Это иллюстрируется графиком на рисунке 4.
Диод VD необходим для обеспечения непрерывного протекания тока в мо-мент срабатывания контактора К1. Он приводит к дополнительным потерям мощности и снижению к.п.д. устройства. Существуют схемы подключения конвертора напряжения и с двумя контакторами без использования диода. В такой схеме имеет место более высокий КПД, но при этом снижается надежность системы.
– 9 –
Рисунок 4 – Изменение напряжения ВДК от времени
Буферная система электропитания с конвертором (рис.5).
Рисунок 5 – Буферная система электропитания с конвертором
Конвертор предназначен для стабилизации выходного напряжения U0 и компенсации изменения напряжения на аккумуляторной батарее. Однако, конвертор должен быть рассчитан на полную мощность нагрузки, что не всегда предпочтительно по сравнению с буферной системой с ВДК.
В системе с отделенной от нагрузки АБ (рис. 6) в нормальном режиме работы питание аппаратуры обеспечивается за счет ВУ. АБ подзаряжается от дополнительного выпрямителя содержания (ВС). Устройство управления (УУК) кон-
Рисунок 6 – Система электропитания с отделенной от нагрузки АБ
- 10 -
тролирует напряжение на нагрузке. При его снижении ниже допустимой нормы срабатывает электронный ключ ЭК (тиристорный или транзисторный), а затем контактор К1. Преимуществом этой системы является отсутствие влияния им-пульсной нагрузки на работу АБ. К недостаткам можно отнести: низкий КПД основного выпрямителя (ВУ) за счет больших габаритных размеров сглаживающих фильтров и дополнительного выпрямителя - ВС.
Безаккумуляторная система электропитания (рис. 7) требует наличие не
Рисунок 7 – Безаккумуляторная система электропитания
менее трех независимых источников энергии, один из которых дизель- генератор. В этой системе всегда работает парное число выпрямителей, при этом улучшается форма потребляемого тока и они должны быть загружены не более чем на 50%. При пропадании напряжения на одном из фидеров замыкается К2 и выпрямители подключаются к другому фидеру. Преимуществом этой системы является простота схемы построения, дешевизна системы. Но по ряду, в основном организационных причин, схема не нашла широкого применения.
2.2 Шкафы вводно-распределительные
Шкафы вводно – распределительные (ШВР) предназначены для ввода и распределения по потребителям электрической энергии трехфазного (однофазного) переменного тока, номинального напряжения 380 В (220 В), а также для защиты вводов сети и нагрузок потребителей от перегрузок и токов короткого замыкания, от перенапряжений, для контроля изоляции и т.п. Шкафы ШВР изготавливаются рядом предприятий в т. ч. ОАО Юрьев – Польским заводом “Промсвязь”.
Шкафы выпускаются с ручным подключением вводов (ШВРР), с автомати-ческим переключением вводов (ШВРА) и без автоматического выключателя для включения вводов (ШВРО). Предусмотрена возможность подключения к ШВР одного и более питающих вводов от сети общего назначения, а также дизель-генераторной установки . Номинальный ток шкафов – от 16 до 1000 А.
При необходимости в шкаф устанавливается панель коммутации аварийного освещения, которая обеспечивает автоматическое подключение сети аварийного освещения к аккумуляторной батарее при попадании напряжения переменного тока и
- 11 -
автоматическое отключение сети аварийного освещения от аккумуляторной батареи при восстановлении напряжения переменного тока. Максимальный ток сети аварийного освещения напряжением аккумуляторной батареи 60, 48 или 24 В составляет 100 А.
Условное обозначение ШВР
Размеры типовых конструктивов указаны в табл. 3.
Таблица 3 – Конструктивные размеры ШВР
Конструктивное
исполнение Высота (Н), мм Ширина (L), мм Глубина (В), мм
Настенное
480 280 или 530 215
630 280 или 530 215
1080 530 215
1230 530 215
1380 530 215
Напольное
1650, 1950, 2250 600 400
1650, 1950, 2250 800 400
1650, 1950, 2250 600 600
1650, 1950, 2250 800 600
Конструктивом предусматривается обслуживание шкафа с лицевой стороны.
Корпуса шкафов настенного и напольного исполнения выполнены из стали с по-крытием порошковой краской.
В шкафу предусматриваются все необходимые приспособления для подключения подводимых кабелей с учетом их сечения и места подвода.
В зависимости от условий эксплуатации и конструктивных требований могут быть использованы специальные шкафы, предназначенные для установки вне помеще -
- 12 -
ний, а также (при небольшом наборе автоматических выключателей) пластиковые боксы на 4...36 модулей.
Рассмотрим наиболее характерные примеры использования ШВРА в системах электроснабжения.
На рис. 8 представлена схема электроснабжения потребителей с несколькими шкафами ввода.
Рисунок 8 – Пример схемы электроснабжения потребителей с несколькими ШВР
Одной из самых распространенных схем ШВРА является схема с двумя вводами от сети. Эта схема реализуется в шкафах типа ШВРА 380 / Iн – 20П (С), где Iн – номинальный ток вводных автоматов и приведена на рисунке 9.
Рисунок 9 а – вариант питания потребителей от одного ввода сети, когда другой ввод находится в резерве.
Рисунок 9 б – вариант питания двух групп потребителей, каждой – от своего ввода сети. При пропадании напряжения на одном из вводов обе группы потребителей переключаются на другой ввод с помощью контакторов.
Рисунок 9 в то же, что и рисунок 9 б, но переключение обеспечивается автоматами с моторными приводами.
Шкаф ШВРА 380/Iн – 20П (С) также обеспечивает:
- местную световую и дистанционную сигнализацию о включении кон-тактора первого или второго сетевого ввода и наличии напряжения на вводах;
- 13 -
Рисунок 9 – Варианты схемы ШВРА с двумя вводами от сети
- возможность индикации наличия напряжения в каждой фазе сети;
- возможность индикации наличия тока в каждой фазе сети;
- стрелочные индикаторы и счетчик учета электроэнергии.
Для электроснабжения электроприемников особой группы первой категории предназначаются шкафы типа ШВРА 380/Iн – 21П (С), где Iн – номинальный ток вводных автоматов. Они предусматривают возможность подключения дизельной электростанции к потребителям и имеют два ввода от сети и один ввод от ДГУ. На рис. 10 представлены различные варианты схемы ШВРА 380/Iн –21П (С).
Рисунок 10 а – ДГУ подключается к потребителям вручную. Блокировка ру-бильников Q4 и Q5 исключает возможность одновременного присутствия напряжения на шинах питания нагрузки.
Рисунок 10 б – автоматическое подключение ДГУ, для чего предусматривается второй АВР.
Рисунок 10 в – вводы внешней сети (СЕТЬ 1 и СЕТЬ 2) подключаются к потребителям через устройство автоматического ввода резерва (АВР) ШВРА и АВР ДГУ. ДГУ подключается к потребителям через собственное устройство АВР.
ШВРА 380/Iн – 21П(С) также обеспечивает:
- местную световую и дистанционную сигнализацию о включении контак-тора первого или второго сетевого ввода и наличии напряжения на вво-дах;
- возможность индикации наличия напряжения в каждой фазе сети;
- возможность индикации наличия тока в каждой фазе сети;
- ручное или автоматическое переключение на ДГУ;
- стрелочные индикаторы и счетчик учета электроэнергии.
Для надежного электроснабжения необслуживаемых регенерационных пунктов выпускаются шкафы вводно-распределительные типа ШВРА 380/Iн-21 С и ШВРА 220/Iн-21 С. Эти шкафы предназначены для эксплуатации в закрытых помещениях с температурой окружающего воздуха от минус 40oС до + 40oС и обеспечивают:
- электропитание технологической нагрузки;
- освещение наземных и подземных коммуникаций напряжением 36В;
- включение термостата – антиконденсационной пластины;
- сигнализацию местную световую и дистанционную о включении контактора основного или резервного ввода и о наличии напряжения на вводах;
- возможность индикации наличия напряжения на каждом из вводов сети;
- учет потребляемой электроэнергии на вводах СЕТЬ 1 и СЕТЬ 2;
- ручное переключение СЕТЬ – ДГУ.
2.3 Силовые кабели и шинопроводы
Широкое применение в системах электроснабжения находят четырехжильные силовые кабели, которые имеют сечение токопроводящих жил от 4 до 185 мм2 и изготавливаются на напряжения до 1 кВ /15/. Четвертая жила является заземляющей или зануляющей. Она может иметь одинаковые с фазным жилами сечение для кабелей сечением до 120мм2 или уменьшенное сечение.
- 15 -
Рисунок 10 – Варианты схемы ШВРА 380/In-21П (С)
На рис. 11 изображено сечение четырехжильного кабеля с секторными жилами.
Рисунок 11 – Сечение четырехжильного кабеля
Буквенные обозначения в маркировке кабелей с медными жилами приведены ниже. Они определяются конструкцией брони, изоляцией и защитными покровами.
Б – броня из двух спальных лент с антикоррозионным защитным покровом;
БН – тоже с негорючим защитным покровом;
Г – отсутствие защитных покровов поверх брони или оболочки;
Л(2Л) – в подушке под бронёй имеется слой (два слоя) из пластмассовых лент;
В(П) – в подушке под бронёй имеется шланг из поливинилхлорида (полиэтилена);
ШВ (Шп) – защитный покров в виде шланга (оболочки) из поливинилхлорида (полиэтилена);
К – броня из круглых оцинкованных стальных проволок, поверх которых наложен защитный покров;
Н – не горючий покров;
П – броня из оцинкованных плоских проволок, поверх которых наложен защитный покров;
C – свинцовая оболочка;
В – изоляция или оболочка из поливинилхлорида;
П – изоляция или оболочка из полиэтилена;
Бб – броня из профилированной стальной ленты;
Р – резиновая изоляция.
Например, марка СРБ – 4x70 – кабель с резиновой изоляцией, свинцовой оболочкой, с бронёй из стальных лент и защитными покровами, четырехжильный, каждая жила имеет сечение 70 мм2.
В зависимости от условий эксплуатации, места прокладки, охлаждения, величины протекающего тока предпочтительны определённые типы кабелей. Некоторые из них с допустимыми токовыми нагрузками приведены в таблице 4.
Магистральные шинопроводы марки ШМА собраны из прямоугольных алюминиевых шин, изолированных друг от друга, расположенных вертикально и зажатых между специальными изоляторами внутри перфорированного корпуса.
- 17-
Таблица 4 – Допустимые токовые нагрузки медных четырехжильных кабелей на напряжение до 1 кВ
Сечение основ-ной жи-лы,
мм2 Сопротивление одной жилы по-стоянному току, Ом/км Допустимый ток, А
Кабели в свинцовой или аллюминиевой оболочке, прокладываемые в земле
ВБбШВ ; ВБбШП
СБВ Кабели в свинцовой оболочке, прокладываемые на воздухе
СБШВ ; СБГ
СБ2Л;СРБГ
4 4,7 35 35
6 3,11 45 45
10 1,84 60 60
16 1,16 80 80
25 0,734 100 100
35 0,529 120 120
50 0,391 145 145
70 0,27 185 185
95 0,195 215 215
120 0,154 350 260
150 0,126 395 300
185 0,100 450 340
Число шин – 3,4 или 6. Шинопроводы марки ШМА предназначены для четырехпроводных сетей с глухозаземленной нейтралью. Распределительные шинопроводы марок ШРА и ШРМ используются для передачи и распределения электроэнергии с возможностью непосредсвенного присоединения к ним электроприемников в системах с глухозаземленной нейтралью при напряжении 220/380 В. Шинопровод типа ШРМ выполнен медными шинами /15/. Некоторые типовые шинопроводы приведены в таблице 5.
Таблица 5 – Типовые шинопроводы
Тип
шинопро-вода Номи-нальный ток, А Сопротивле-ние на
фазу, Ом/км Тип
шинопро-вода Номи-нальный ток, А Сопротив-ление на
фазу, Ом/км
ШМА 73 1600 0,031 ШРА У 630 0,085
ШМА 68Н 2500 0,027 ШРА 73 250 0,2
4000 0,013 ШРМ 75 100/250 0,75
ШРА 74 400 0,15 ШЗМ 16 1600 0,018
630 0,14
- 18-
2.4 Аккумуляторные батареи
Аккумулятор – это химический источник тока многократного действия. Он способен накапливать, длительно сохранять и отдавать по мере надобности электрическую энергию, полученную от внешнего источника постоянного тока.
2.4.1 Современные типы аккумуляторов
В настоящее время на предприятиях связи используются закрытые и герметичные аккумуляторы. Наиболее широкое распространение получили свинцовые аккумуляторы (никель- кадмиевые АБ применяются только в особых случаях при жестких требованиях по температуре). Это связано с высокими технико-экономическими показателями кислотных АБ – большой удельной энергоемкостью и малым значением стоимости на единицу количества электричества. К достоинствам свинцовых аккумуляторов относится также их высокая надежность
и относительно низкие эксплуатационные затраты. Срок службы стационарных аккумуляторов может достигать 12...15 лет, стартерных – 4...5 лет. По конструктивным особенностям аккумуляторы делятся на две большие группы – закрытого типа и герметичные. Закрытые негерметичные аккумуляторы (ЗНА) выпускают в настоящее время ряд зарубежных фирм. Основными представителями рынка не
герметичных аккумуляторов для электросвязи являются корпорация COSLIGHT в
Китае (серия GF), Северо – америнканское предприятие Телеком (Nort American Telecom (серии OPzS, OPzL, Ogi, UPS, OpzS, Ogi), OLDHAM France (серии OPzS, LIC, UTC, NTC и др.) и т.д./1,2/. Все ЗНА можно условно разделить на два типа: конструкция с избыточным объёмом электролита и конструкция с возможностью долива воды. Корпус выполняется из прозрачной пластмассы.
Герметичные аккумуляторы изготавливаются из непрозрачной пластмассы. На верхней крышке расположены выходные клеммы и регулирующий клапан. Часто регулирующий клапан скрыт декоративно-защитной панелью и обнаружить его трудно. Регулирующий клапан имеет принципиальное отличие от пробки ЗНА, хотя в некоторых моделях выглядит как заливная пробка. Он осуществляет одностороннее пропускание газов из бака аккумулятора наружу, снимает избыточное давление, но препятствует проникновению газообразных примесей внутрь бака. Герметичные аккумуляторы в зависимости от способа связи электролита делят на два типа:
- аккумуляторы с микропористым сепаратором, который пропитывается сернокислотным электролитом. Капиллярная структура сепаратора предотвращает вытекание электролита. По такому принципу строятся аккумуляторы фирм OLDHAM France (АБ типа OPzS, TC, EG, ESPACE и др.), YUASA и CHLORIDE.
- аккумуляторы с желеобразным силиконовым электролитом нетекучей, вязкой консистенции. Сепаратор в этом случае изготавливается аналогично “классическим” аккумуляторам. По такому принципу строятся аккумуляторы VARTA и HAGEN /3,4/.
- 19-
Во время эксплуатации закрытых и герметичных аккумуляторов должны обязательно соблюдаться следующие условия:
1. Содержание в режиме “плавающего заряда”, то есть превышение напряжения выпрямителя содержания над ЭДС АБ при любых изменениях этой ЭДС должно быть равно 0,14 В/элемент. Последнее равно напряжению поляризации кислотного аккумулятора. Величина ЭДС ЗНА и герметичных аккумуляторов различна. У герметичных она выше за счет более высокой концентрации электролита. Поэтому напряжение “плавающего” заряда в нормальных условиях равно ЭДС + напряжение поляризации = 2.14+ 0.14 = 2.28В/элемент. Динамика заряда приведена на рис.12. На рисунке обозначено: 1 – кривая напряжения, 2 – кривая тока (величина тока принята условно).
Рисунок 12 - Динамика заряда аккумуляторов
2. Нестабильность напряжения “плавающего заряда” должна быть не более 1%, поскольку рекомбинация газа наиболее эффективна при малом газовыделении. При большом газовыделении избыток не рекомбинированного газа сбрасывается через клапан, что отрицательно сказывается на долго-вечности АБ.
3. Требуется температурная компенсация напряжения “плавающего заряда”. Понижение напряжения “плавающего заряда”, как и понижение температуры, ведут к саморазряду и уменьшению гарантированного времени разряда до конечного напряжения. На рисунке 13 приведена типичная зависимость напряжения “плавающего заряда” от температуры, поддерживаемая выпрямителем содержания.
4. Конечное напряжение разряда закрытых аккумуляторов может быть ниже, чем у открытых, благодаря лучшей диффузии активных веществ. Кроме того, эти аккумуляторы допускают разряд при низких температурах (рис. 14), хотя отдают при этом меньшую ёмкость.
Несоблюдение перечисленных условий приводит к значительному сокращению
- 20-
Рисунок 13 - Зависимость напряжения “плавающего заряда” от температуры
Рисунок 14 - Конечное напряжение в зависимости от температуры
срока службы АБ. Так, например, повышение температуры на 100С сокращает срок службы герметичных АБ в два раза, если номинальные параметры рассчитаны на температуру +200С. На закрытые батареи температура оказывает меньшее влияние, но оно тоже существенно.
2.4.2 Электрические характеристики аккумуляторов
1. Емкость аккумулятора – это количество электричества, которое можно получить от аккумулятора в определенных условиях разряда.
Номинальная емкость аккумулятора, приведенная к условному 10-часовому режиму разряда при температуре среды 20оС, зависит от ряда факторов: тока разряда Iр, времени разряда tр и соответствующего ему коэффициента отдачи по ем-
- 21 –
кости hQ, температуры окружающей среды tср :
, (Aч)
где hQ находится в пределах от 0,51...1,0 ( см. далее таблицу 10 ).
2. Номинальное напряжение аккумулятора – это напряжение на выводах полностью заряженного аккумулятора в течение первого часа разряда током 10 – часового режима разряда при температуре электролита 20°С (UЭЛ..НОМ = 2 В).
3. Напряжение в конце разряда равно UЭЛ.КР = (1,75...1,8) В. При разряде аккумулятора токами, превышающими ток 10 – часового режима разряда, напряжение в процессе разряда будет понижаться быстрее, чем в 10 – часовом режиме и достигнет уровня 1,8 В, когда с аккумулятора еще не снята номинальная емкость. В таких случаях, показателем окончания разряда является величина напряжения на одном элементе.
4. Величина напряжения для заряда должна быть больше ЭДС (E), так как зарядному току приходится преодолевать внутреннее сопротивление аккумулятора (напряжение поляризации, равное IЗ×RВН): UЗАР=E+IЗ×RВН= (2,14+0,14)В.
5. Внутреннее сопротивление аккумулятора RВН складывается из сопротивления аккумуляторных пластин, сепаратора и электролита. Внутреннее сопротив-
ление увеличивается по мере разряда в силу уменьшения плотности электро-лита,
а также в связи с образованием сульфата свинца. Омическое сопротивление одно
го, полностью заряженного, элемента составляет примерно 0,0036 Ом, а в состоя
нии полного разряда – 0,007 Ом.
6. Плотность электролита заряженного аккумулятора составляет (1,25...1,3) г/см3 , в состоянии разряда – 1,05 г/см3.
2.5 Системы заземления
В задаче энергоснабжения предприятия связи системы заземления играют важную роль и как рабочий элемент энергораспределения, и как гарант защиты персонала от поражения электрическим током.
Заземление в электропитающих установках может выполняться на стороне переменного и на стороне постоянного тока.
2.5.1 Заземление на стороне переменного тока
В системах канализации электрической энергии находят применение четы-рех- и пятипроводные линии (трехпроводные линии используют крайне редко). Некоторые варианты систем заземления приведены на рисунке 15.
- 22-
а) система TN-S; б) система TN-C; в) система TT; г) система IT.
Рисунок 15 – Заземление на стороне переменного тока
На рисунке применяются следующие обозначения:
Первая буква - характер заземления источника питания:
Т - непосредственное присоединение одной точки токоведущих частей ис-
точника питания к земле;
I - все токоведущие части изолированы от земли или одна точка заземлена через сопротивление.
Вторая буква - характер заземления открытых проводящих частей электроустановки:
Т - непосредственная связь открытых проводящих частей с землей, незави-симо от характера связи источника питания с землей;
N - непосредственная связь открытых проводящих частей с точкой заземления источника питания (в системах переменного тока обычно заземляется нейтраль).
Последующие буквы - устройство нулевого рабочего и нулевого защитного проводников:
S - функции нулевого защитного и нулевого рабочего проводников обеспечиваются раздельными проводниками.
С - функции нулевого защитного и нулевого рабочего проводников объединены в одном проводнике.
нулевой рабочий проводник (N)
нулевой защитный проводник (РЕ)
совмещенный нулевой рабочий и защитный проводник (PEN)
- 23-
1 – заземление источника энергии;
2 – открытые проводящие части;
3 – заземление корпуса оборудования;
4 – заземляющий резистор;
L1, L2, L3 – фазы сети.
В системе ТN-S нулевой рабочий и нулевой защитный проводники работают раздельно; в системе TN-С нулевой рабочий и нулевой защитный проводники объединены по всей сети; в системе TT корпуса оборудования заземляются отдельно; в системе IT заземление нейтрали проводится через сопротивление.
Практические схемы заземления могут иметь и другие конфигурации.
2.5.2 Заземление на стороне постоянного тока
Решение о заземлении положительного или отрицательного полюса должно основываться на полярности питания аппаратуры и учитываться электрохимическая коррозия заземлителя. Существующие системы заземления цепей постоянного тока показаны на рисунке 16. Условные обозначения соответствуют схеме рис. 15.
Возможны и другие варианты заземления.
а) Система TN- S ; б) Система TN-C; в) Система TT; г) Система IT
Рисунок 16 – Заземление на стороне постоянного тока
- 24 -
2.5.3 Устройство заземлений
Заземляющие устройства делят на защитное и рабо
- составить функциональную схему системы электропитания и перечень элементов с указанием всех типов выбранного оборудования
Исходные данные к расчету
Предпоследняя цифра пароля 0 Последняя цифра пароля 3
Напряжение питания основного канала цепи постоянного тока, U0, В 60 Удельное сопротивление грунта,
r0, Ом×м /7,14/ 6
Максимальный ток нагрузки, I0, А 400 Длина шинопровода (кабеля) lф, км
1,5
Ток аварийного освещения, IОСВ, А 5 Место прокладки шинопровода (кабеля) воздух
Полная мощность потребления на хозяйственные нужды, SХОЗ , кВА 5 Первичная сеть трехфазная, четырехпроводная, UФ=220В, fС=50Гц по ГОСТ 13.109 - 97
Коэффициент мощности нагрузки на хоз. нужды, cosjхн , отн.ед. 0,97
Время разряда аккумуляторных батарей,
tр , час 3
Рабочая температура окр. среды, tср, ̊ С +20
3. Рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип
4. Найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство
5. Расчет заземляющего устройства
6. Выбор автомата защиты
7. Выбор дизель-генераторной установки.
8. Составляем функциональную схему ЭПУ и перечень элементов с указанием типов всех, используемых устройств.
______________________________
1 ЗАДАНИЕ И ОБЩИЕ УКАЗАНИЯ ПО ОФОРМЛЕНИЮ
КОНТРОЛЬНОЙ РАБОТЫ
В контрольной работе необходимо выполнить следующее:
- рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип; найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство; выбрать вводный шкаф; рассчитать заземляющее устройство и выбрать автомат защиты.
- составить функциональную схему системы электропитания (см. рис. П1) и перечень элементов с указанием всех типов выбранного оборудования (рис. П2).
Исходные данные к расчету выбираются из таблиц 1 и 2 в соответствии с номером зачётной книжки.
Контрольная работа выполняется в обычной ученической тетради (или на листах формата А4). Она должна быть аккуратно оформлена, разборчиво написана на одной стороне каждого листа, т.е. на правой странице развернутой тетради. Левая страница должна быть оставлена чистой, так как она предназначена для внесения студентами исправлений и дополнений по результатам рецензии.
Для замечаний преподавателя на каждой странице тетради необходимо оставлять поля шириной 3...4 см. Все страницы нумеруются.
На обложке тетради следует наклеить заполненный адресный бланк, а на первой странице тетради должен быть титульный лист с указанием номера варианта.
КОНТРОЛЬНАЯ РАБОТА ДОЛЖНА ОБЯЗАТЕЛЬНО СОДЕРЖАТЬ:
- исходные данные к расчету;
- 4 -
Таблица 1 - Варианты задания
Предпоследняя цифра номера зачетной книжки 0 1 2 3 4 5 6 7 8 9
Напряжение питания основного канала цепи по-стоянного тока, U0, В 60 48 24 48 60 24 60 48 24 48
Максимальный ток нагрузки, I0, А 400 500 700 300 1000 450 750 450 550 650
Ток аварийного освещения, IОСВ, А 5 3 4 4,5 3,5 2,8 1,9 2,7 3,2 4,7
Полная мощность потребления на хозяйственные нужды, SХОЗ , кВА 5 6 7 8 10 3 4 3,5 5 4
Коэффициент мощности нагрузки на хоз. нужды, cos хн , отн.ед. 0,97 0,93 0,9 0,95 0,98 0,94 0,92 0,91 0,96 0,89
Время разряда аккумуляторных батарей,
tр , час 3 5 1 3 5 1 3 5 1 3
Рабочая температура окр. среды, tср, ̊ С +20 +18 +10 +12 +25 +20 +18 +15 +10 +12
Таблица 2 - Варианты задания
Последняя цифра номера зачетной книжки 0 1 2 3 4 5 6 7 8 9
Удельное сопротивление грунта,
0, Омм /7,14/ 20 30 10 6 40 30 20 80 50 40
Длина шинопровода (кабеля) l ф, км
1,0 1,9 2,0 1,5 0,9 2,1 3,0 1,7 1,6 2,6
Место прокладки шинопровода
(кабеля) земля воздух земля воздух земля воздух земля воздух земля воздух
Первичная сеть трехфазная, четырехпроводная, UФ=220В, fС=50Гц по ГОСТ 13.109 - 97
- описание буферной системы электропитания, которая будет рассчитываться;
- расчетные формулы привести в общем виде и с подставленными в системе СИ численными значениями величин;
- схемы и графики должны соответствовать требованиям ЕСКД (чертежи могут быть выполнены карандашом);
- все рисунки, графики, чертежи и таблицы должны быть пронумерованы;
- в конце контрольной работы привести перечень элементов схемы, выполненный в соответствии с требованиями ЕСКД;
- список литературы;
- работа должна быть подписана и указана дата.
Допускается выполнение контрольной работы с помощью средств вычисли-тельной техники.
Получив контрольную работу с рецензией преподавателя, студент должен ознакомиться со всеми замечаниями, исправить отмеченные ошибки и письменно ответить на все поставленные преподавателем вопросы.
В том случае, если контрольная работа выполнена неудовлетворительно и возвращена студенту, необходимо внести в неё исправления или выполнить задание заново в соответствии с указаниями преподавателя, после чего её следует снова выслать для повторной проверки вместе с незачтённой ранее работой.
2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ
КОНТРОЛЬНОЙ РАБОТЫ
2.1 Структурная схема энергоснабжения предприятия связи.
Схемы бесперебойного электроснабжения
Предприятия электросвязи относятся к потребителям первой категории и их энергоснабжение должно обеспечиваться от трех независимых источников. Два внешних ввода должны быть от отдельных электростанций, а третий – от собст-венной дизельной электростанции.
Система электроснабжения – это комплекс сооружений на территории предприятия связи и в производственных помещениях, обеспечивающий функ-ционирование предприятия связи, как в нормальных, так и в аварийных режимах его работы. Структурная схема электроснабжения предприятия связи приведена на рисунке 1.
Схема включает в себя такие устройства:
- трансформаторные подстанции (ТП1 и ТП2);
- дизель – генераторную установку (ДГУ);
- автомат ввода резерва (АВР);
- шкаф вводный распределительный переменного тока (ШВР);
- электропитающую установку (ЭПУ);
- систему вентиляции и кондиционирования (СВ и К);
- электросети освещения;
- систему мониторинга и управления (СМ и У).
- 6 -
Рисунок 1 – Структурная схема электроснабжения предприятия связи
Трансформаторная подстанция обеспечивает понижение напряжения от (6...10) кВ до 220/380 В трехфазного переменного тока промышленной частоты 50 Гц. Вторичные цепи трансформаторов подстанций должны быть включены по схеме звезда с нулевым проводом и иметь систему заземления.
АВР - автомат ввода резерва, осуществляет переключение на резервный ввод 2 (фидер) в случае пропадания напряжения на основном вводе 1 (фидере). При пропадании напряжения на обоих фидерах осуществляется подключение дизель- генераторной установки (ДГУ). Ее запуск выполняется автоматически сжатым воздухом или с помощью электрического стартера. Запуск дизеля должен произойти за (1...3) минуты. Разрешается запускать его с помощью стартера до 3-х раз (по 5...6 с). Это обусловлено возможностью выхода из строя стартерных аккумуляторов. Мощность ДГУ лежит в пределах от 8 до 1500 кВт. В системах электроснабжения чаще всего используется два ДГУ, один – основной, другой – резервный.
ШВР – шкаф вводный распределительный обеспечивает ввод и распределение энергии по потребителям с помощью различных токоведущих шин, а также защиту потребителей от перегрузок по напряжению и токов короткого замыкания. На передней панели ШВР расположены измерительные приборы для контроля коэффициента мощности (cosj) и полной потребляемой мощности (S), а также автоматы защиты. Иногда в ШВР монтируют и АВР.
Система вентиляции и кондиционирования воздуха (СВ и К) обеспечивает нормальное функционирование (что также повышает надежность системы) ЭПУ,
ДГУ, аккумуляторных батарей. СВ и К регулирует температурный режим отдельных устройств. При зарядке аккумуляторной батареи происходит выделение газов в окружающую среду, поэтому необходимо производить очистку воздуха для обеспечения нормальной жизнедеятельности персонала. СВ и К обеспечивает циркуляцию воздуха и его очистку от вредных примесей.
- 7 -
Система мониторинга и управления осуществляет контроль состояния всех основных узлов и передачу этой информации в сервисный центр. Для этого используется контроллер (устройство логического управления) и модем для передачи информации по телефонным каналам.
Электропитающая установка – это комплекс устройств, предназначенных для распределения электрической энергии, её регулирования, резервирования, стабилизации и контроля качества питающих напряжений. Она включает в себя основное и резервное выпрямительные устройства (ВУ), инверторы (И) и конверторы (К) напряжения, аккумуляторную батарею (АБ), токораспределительную сеть (ТРС) и систему заземления.
ВУ – выпрямительное устройство - преобразует напряжение переменного тока в напряжение постоянного тока и может состоять из нескольких параллельно включенных выпрямителей для увеличения тока нагрузки. ВУ могут работать в двух режимах: в режиме стабилизации напряжения для питания аппаратуры связи и подзарядки АБ (нормальный режим); в режиме стабилизации тока заряда АБ после их разряда на нагрузку в условиях отсутствия напряжения переменного тока (аварийный режим).
И - инвертор напряжения - преобразует напряжение постоянного тока в напряжение переменного тока заданной частоты прямоугольной или синусоидальной формы и обеспечивает его стабилизацию.
К - конвертор напряжения – преобразует постоянное напряжение одного уровня в постоянное напряжение другого уровня. Конвертор напряжения включает в себя инвертор напряжения и выпрямитель. Промежуточным звеном является высокочастотный трансформатор. Конвертор напряжения может выполнять одну из двух функций в системе электропитания:
- формировать дополнительные градации (уровни) напряжения;
- обеспечивать вольтодобавку к аккумуляторной батарее при ее разряде в аварийном режиме работы.
АБ - аккумуляторная батарея – химический источник постоянного тока. Используется в качестве резервного источника энергии в аварийном режиме до момента запуска ДГУ. После аварии происходит восстановление элементов АБ в режиме стабилизации тока от одного из источников переменного тока.
Получение бесперебойного энергоснабжения на стороне постоянного тока может быть обеспечено различными способами.
На предприятиях связи используются пять модификаций системы: буферная система электропитания; буферная система электропитания с вольтодобавочным конвертором (ВДК); буферная система с конвертором; система с отделенной от нагрузки АБ; безаккумуляторная система. Они представлены на рисунках 2...6.
В буферной системе электропитания АБ постоянно подключена к нагрузке (рис. 2).
Рисунок 2 – Буферная система электропитания
Преимуществом буферных систем электропитания является использование сглаживающих свойств АБ, что значительно уменьшает габаритные размеры сглаживающих фильтров, установленных на выходе ВУ. Недостатком данной системы является воздействие импульсной нагрузки на АБ, что снижает срок службы, особенно герметичных аккумуляторов в нормальном режиме работы. При повышенных требованиях к качественным показателям напряжения питания и длительной работе от АБ в аварийных режимах используется буферная система питания с вольтодобавочным конвертором – ВДК (рис.3).
Рисунок 3 – Буферная система электропитания с ВДК
В нормальном режиме контактор К1 разомкнут, элементы АБ поддерживаются в нормальном состоянии от ВУ. Одновременно обеспечивается питание основного оборудования от выпрямителя. В аварийном режиме замыкается контактор К1 и выход ВДК соединяется последовательно с АБ, вход ВДК при этом подключается к АБ. При разряде АБ ВДК добавляет недостающую долю напряжения для обеспечения постоянства напряжения на нагрузке. Это иллюстрируется графиком на рисунке 4.
Диод VD необходим для обеспечения непрерывного протекания тока в мо-мент срабатывания контактора К1. Он приводит к дополнительным потерям мощности и снижению к.п.д. устройства. Существуют схемы подключения конвертора напряжения и с двумя контакторами без использования диода. В такой схеме имеет место более высокий КПД, но при этом снижается надежность системы.
– 9 –
Рисунок 4 – Изменение напряжения ВДК от времени
Буферная система электропитания с конвертором (рис.5).
Рисунок 5 – Буферная система электропитания с конвертором
Конвертор предназначен для стабилизации выходного напряжения U0 и компенсации изменения напряжения на аккумуляторной батарее. Однако, конвертор должен быть рассчитан на полную мощность нагрузки, что не всегда предпочтительно по сравнению с буферной системой с ВДК.
В системе с отделенной от нагрузки АБ (рис. 6) в нормальном режиме работы питание аппаратуры обеспечивается за счет ВУ. АБ подзаряжается от дополнительного выпрямителя содержания (ВС). Устройство управления (УУК) кон-
Рисунок 6 – Система электропитания с отделенной от нагрузки АБ
- 10 -
тролирует напряжение на нагрузке. При его снижении ниже допустимой нормы срабатывает электронный ключ ЭК (тиристорный или транзисторный), а затем контактор К1. Преимуществом этой системы является отсутствие влияния им-пульсной нагрузки на работу АБ. К недостаткам можно отнести: низкий КПД основного выпрямителя (ВУ) за счет больших габаритных размеров сглаживающих фильтров и дополнительного выпрямителя - ВС.
Безаккумуляторная система электропитания (рис. 7) требует наличие не
Рисунок 7 – Безаккумуляторная система электропитания
менее трех независимых источников энергии, один из которых дизель- генератор. В этой системе всегда работает парное число выпрямителей, при этом улучшается форма потребляемого тока и они должны быть загружены не более чем на 50%. При пропадании напряжения на одном из фидеров замыкается К2 и выпрямители подключаются к другому фидеру. Преимуществом этой системы является простота схемы построения, дешевизна системы. Но по ряду, в основном организационных причин, схема не нашла широкого применения.
2.2 Шкафы вводно-распределительные
Шкафы вводно – распределительные (ШВР) предназначены для ввода и распределения по потребителям электрической энергии трехфазного (однофазного) переменного тока, номинального напряжения 380 В (220 В), а также для защиты вводов сети и нагрузок потребителей от перегрузок и токов короткого замыкания, от перенапряжений, для контроля изоляции и т.п. Шкафы ШВР изготавливаются рядом предприятий в т. ч. ОАО Юрьев – Польским заводом “Промсвязь”.
Шкафы выпускаются с ручным подключением вводов (ШВРР), с автомати-ческим переключением вводов (ШВРА) и без автоматического выключателя для включения вводов (ШВРО). Предусмотрена возможность подключения к ШВР одного и более питающих вводов от сети общего назначения, а также дизель-генераторной установки . Номинальный ток шкафов – от 16 до 1000 А.
При необходимости в шкаф устанавливается панель коммутации аварийного освещения, которая обеспечивает автоматическое подключение сети аварийного освещения к аккумуляторной батарее при попадании напряжения переменного тока и
- 11 -
автоматическое отключение сети аварийного освещения от аккумуляторной батареи при восстановлении напряжения переменного тока. Максимальный ток сети аварийного освещения напряжением аккумуляторной батареи 60, 48 или 24 В составляет 100 А.
Условное обозначение ШВР
Размеры типовых конструктивов указаны в табл. 3.
Таблица 3 – Конструктивные размеры ШВР
Конструктивное
исполнение Высота (Н), мм Ширина (L), мм Глубина (В), мм
Настенное
480 280 или 530 215
630 280 или 530 215
1080 530 215
1230 530 215
1380 530 215
Напольное
1650, 1950, 2250 600 400
1650, 1950, 2250 800 400
1650, 1950, 2250 600 600
1650, 1950, 2250 800 600
Конструктивом предусматривается обслуживание шкафа с лицевой стороны.
Корпуса шкафов настенного и напольного исполнения выполнены из стали с по-крытием порошковой краской.
В шкафу предусматриваются все необходимые приспособления для подключения подводимых кабелей с учетом их сечения и места подвода.
В зависимости от условий эксплуатации и конструктивных требований могут быть использованы специальные шкафы, предназначенные для установки вне помеще -
- 12 -
ний, а также (при небольшом наборе автоматических выключателей) пластиковые боксы на 4...36 модулей.
Рассмотрим наиболее характерные примеры использования ШВРА в системах электроснабжения.
На рис. 8 представлена схема электроснабжения потребителей с несколькими шкафами ввода.
Рисунок 8 – Пример схемы электроснабжения потребителей с несколькими ШВР
Одной из самых распространенных схем ШВРА является схема с двумя вводами от сети. Эта схема реализуется в шкафах типа ШВРА 380 / Iн – 20П (С), где Iн – номинальный ток вводных автоматов и приведена на рисунке 9.
Рисунок 9 а – вариант питания потребителей от одного ввода сети, когда другой ввод находится в резерве.
Рисунок 9 б – вариант питания двух групп потребителей, каждой – от своего ввода сети. При пропадании напряжения на одном из вводов обе группы потребителей переключаются на другой ввод с помощью контакторов.
Рисунок 9 в то же, что и рисунок 9 б, но переключение обеспечивается автоматами с моторными приводами.
Шкаф ШВРА 380/Iн – 20П (С) также обеспечивает:
- местную световую и дистанционную сигнализацию о включении кон-тактора первого или второго сетевого ввода и наличии напряжения на вводах;
- 13 -
Рисунок 9 – Варианты схемы ШВРА с двумя вводами от сети
- возможность индикации наличия напряжения в каждой фазе сети;
- возможность индикации наличия тока в каждой фазе сети;
- стрелочные индикаторы и счетчик учета электроэнергии.
Для электроснабжения электроприемников особой группы первой категории предназначаются шкафы типа ШВРА 380/Iн – 21П (С), где Iн – номинальный ток вводных автоматов. Они предусматривают возможность подключения дизельной электростанции к потребителям и имеют два ввода от сети и один ввод от ДГУ. На рис. 10 представлены различные варианты схемы ШВРА 380/Iн –21П (С).
Рисунок 10 а – ДГУ подключается к потребителям вручную. Блокировка ру-бильников Q4 и Q5 исключает возможность одновременного присутствия напряжения на шинах питания нагрузки.
Рисунок 10 б – автоматическое подключение ДГУ, для чего предусматривается второй АВР.
Рисунок 10 в – вводы внешней сети (СЕТЬ 1 и СЕТЬ 2) подключаются к потребителям через устройство автоматического ввода резерва (АВР) ШВРА и АВР ДГУ. ДГУ подключается к потребителям через собственное устройство АВР.
ШВРА 380/Iн – 21П(С) также обеспечивает:
- местную световую и дистанционную сигнализацию о включении контак-тора первого или второго сетевого ввода и наличии напряжения на вво-дах;
- возможность индикации наличия напряжения в каждой фазе сети;
- возможность индикации наличия тока в каждой фазе сети;
- ручное или автоматическое переключение на ДГУ;
- стрелочные индикаторы и счетчик учета электроэнергии.
Для надежного электроснабжения необслуживаемых регенерационных пунктов выпускаются шкафы вводно-распределительные типа ШВРА 380/Iн-21 С и ШВРА 220/Iн-21 С. Эти шкафы предназначены для эксплуатации в закрытых помещениях с температурой окружающего воздуха от минус 40oС до + 40oС и обеспечивают:
- электропитание технологической нагрузки;
- освещение наземных и подземных коммуникаций напряжением 36В;
- включение термостата – антиконденсационной пластины;
- сигнализацию местную световую и дистанционную о включении контактора основного или резервного ввода и о наличии напряжения на вводах;
- возможность индикации наличия напряжения на каждом из вводов сети;
- учет потребляемой электроэнергии на вводах СЕТЬ 1 и СЕТЬ 2;
- ручное переключение СЕТЬ – ДГУ.
2.3 Силовые кабели и шинопроводы
Широкое применение в системах электроснабжения находят четырехжильные силовые кабели, которые имеют сечение токопроводящих жил от 4 до 185 мм2 и изготавливаются на напряжения до 1 кВ /15/. Четвертая жила является заземляющей или зануляющей. Она может иметь одинаковые с фазным жилами сечение для кабелей сечением до 120мм2 или уменьшенное сечение.
- 15 -
Рисунок 10 – Варианты схемы ШВРА 380/In-21П (С)
На рис. 11 изображено сечение четырехжильного кабеля с секторными жилами.
Рисунок 11 – Сечение четырехжильного кабеля
Буквенные обозначения в маркировке кабелей с медными жилами приведены ниже. Они определяются конструкцией брони, изоляцией и защитными покровами.
Б – броня из двух спальных лент с антикоррозионным защитным покровом;
БН – тоже с негорючим защитным покровом;
Г – отсутствие защитных покровов поверх брони или оболочки;
Л(2Л) – в подушке под бронёй имеется слой (два слоя) из пластмассовых лент;
В(П) – в подушке под бронёй имеется шланг из поливинилхлорида (полиэтилена);
ШВ (Шп) – защитный покров в виде шланга (оболочки) из поливинилхлорида (полиэтилена);
К – броня из круглых оцинкованных стальных проволок, поверх которых наложен защитный покров;
Н – не горючий покров;
П – броня из оцинкованных плоских проволок, поверх которых наложен защитный покров;
C – свинцовая оболочка;
В – изоляция или оболочка из поливинилхлорида;
П – изоляция или оболочка из полиэтилена;
Бб – броня из профилированной стальной ленты;
Р – резиновая изоляция.
Например, марка СРБ – 4x70 – кабель с резиновой изоляцией, свинцовой оболочкой, с бронёй из стальных лент и защитными покровами, четырехжильный, каждая жила имеет сечение 70 мм2.
В зависимости от условий эксплуатации, места прокладки, охлаждения, величины протекающего тока предпочтительны определённые типы кабелей. Некоторые из них с допустимыми токовыми нагрузками приведены в таблице 4.
Магистральные шинопроводы марки ШМА собраны из прямоугольных алюминиевых шин, изолированных друг от друга, расположенных вертикально и зажатых между специальными изоляторами внутри перфорированного корпуса.
- 17-
Таблица 4 – Допустимые токовые нагрузки медных четырехжильных кабелей на напряжение до 1 кВ
Сечение основ-ной жи-лы,
мм2 Сопротивление одной жилы по-стоянному току, Ом/км Допустимый ток, А
Кабели в свинцовой или аллюминиевой оболочке, прокладываемые в земле
ВБбШВ ; ВБбШП
СБВ Кабели в свинцовой оболочке, прокладываемые на воздухе
СБШВ ; СБГ
СБ2Л;СРБГ
4 4,7 35 35
6 3,11 45 45
10 1,84 60 60
16 1,16 80 80
25 0,734 100 100
35 0,529 120 120
50 0,391 145 145
70 0,27 185 185
95 0,195 215 215
120 0,154 350 260
150 0,126 395 300
185 0,100 450 340
Число шин – 3,4 или 6. Шинопроводы марки ШМА предназначены для четырехпроводных сетей с глухозаземленной нейтралью. Распределительные шинопроводы марок ШРА и ШРМ используются для передачи и распределения электроэнергии с возможностью непосредсвенного присоединения к ним электроприемников в системах с глухозаземленной нейтралью при напряжении 220/380 В. Шинопровод типа ШРМ выполнен медными шинами /15/. Некоторые типовые шинопроводы приведены в таблице 5.
Таблица 5 – Типовые шинопроводы
Тип
шинопро-вода Номи-нальный ток, А Сопротивле-ние на
фазу, Ом/км Тип
шинопро-вода Номи-нальный ток, А Сопротив-ление на
фазу, Ом/км
ШМА 73 1600 0,031 ШРА У 630 0,085
ШМА 68Н 2500 0,027 ШРА 73 250 0,2
4000 0,013 ШРМ 75 100/250 0,75
ШРА 74 400 0,15 ШЗМ 16 1600 0,018
630 0,14
- 18-
2.4 Аккумуляторные батареи
Аккумулятор – это химический источник тока многократного действия. Он способен накапливать, длительно сохранять и отдавать по мере надобности электрическую энергию, полученную от внешнего источника постоянного тока.
2.4.1 Современные типы аккумуляторов
В настоящее время на предприятиях связи используются закрытые и герметичные аккумуляторы. Наиболее широкое распространение получили свинцовые аккумуляторы (никель- кадмиевые АБ применяются только в особых случаях при жестких требованиях по температуре). Это связано с высокими технико-экономическими показателями кислотных АБ – большой удельной энергоемкостью и малым значением стоимости на единицу количества электричества. К достоинствам свинцовых аккумуляторов относится также их высокая надежность
и относительно низкие эксплуатационные затраты. Срок службы стационарных аккумуляторов может достигать 12...15 лет, стартерных – 4...5 лет. По конструктивным особенностям аккумуляторы делятся на две большие группы – закрытого типа и герметичные. Закрытые негерметичные аккумуляторы (ЗНА) выпускают в настоящее время ряд зарубежных фирм. Основными представителями рынка не
герметичных аккумуляторов для электросвязи являются корпорация COSLIGHT в
Китае (серия GF), Северо – америнканское предприятие Телеком (Nort American Telecom (серии OPzS, OPzL, Ogi, UPS, OpzS, Ogi), OLDHAM France (серии OPzS, LIC, UTC, NTC и др.) и т.д./1,2/. Все ЗНА можно условно разделить на два типа: конструкция с избыточным объёмом электролита и конструкция с возможностью долива воды. Корпус выполняется из прозрачной пластмассы.
Герметичные аккумуляторы изготавливаются из непрозрачной пластмассы. На верхней крышке расположены выходные клеммы и регулирующий клапан. Часто регулирующий клапан скрыт декоративно-защитной панелью и обнаружить его трудно. Регулирующий клапан имеет принципиальное отличие от пробки ЗНА, хотя в некоторых моделях выглядит как заливная пробка. Он осуществляет одностороннее пропускание газов из бака аккумулятора наружу, снимает избыточное давление, но препятствует проникновению газообразных примесей внутрь бака. Герметичные аккумуляторы в зависимости от способа связи электролита делят на два типа:
- аккумуляторы с микропористым сепаратором, который пропитывается сернокислотным электролитом. Капиллярная структура сепаратора предотвращает вытекание электролита. По такому принципу строятся аккумуляторы фирм OLDHAM France (АБ типа OPzS, TC, EG, ESPACE и др.), YUASA и CHLORIDE.
- аккумуляторы с желеобразным силиконовым электролитом нетекучей, вязкой консистенции. Сепаратор в этом случае изготавливается аналогично “классическим” аккумуляторам. По такому принципу строятся аккумуляторы VARTA и HAGEN /3,4/.
- 19-
Во время эксплуатации закрытых и герметичных аккумуляторов должны обязательно соблюдаться следующие условия:
1. Содержание в режиме “плавающего заряда”, то есть превышение напряжения выпрямителя содержания над ЭДС АБ при любых изменениях этой ЭДС должно быть равно 0,14 В/элемент. Последнее равно напряжению поляризации кислотного аккумулятора. Величина ЭДС ЗНА и герметичных аккумуляторов различна. У герметичных она выше за счет более высокой концентрации электролита. Поэтому напряжение “плавающего” заряда в нормальных условиях равно ЭДС + напряжение поляризации = 2.14+ 0.14 = 2.28В/элемент. Динамика заряда приведена на рис.12. На рисунке обозначено: 1 – кривая напряжения, 2 – кривая тока (величина тока принята условно).
Рисунок 12 - Динамика заряда аккумуляторов
2. Нестабильность напряжения “плавающего заряда” должна быть не более 1%, поскольку рекомбинация газа наиболее эффективна при малом газовыделении. При большом газовыделении избыток не рекомбинированного газа сбрасывается через клапан, что отрицательно сказывается на долго-вечности АБ.
3. Требуется температурная компенсация напряжения “плавающего заряда”. Понижение напряжения “плавающего заряда”, как и понижение температуры, ведут к саморазряду и уменьшению гарантированного времени разряда до конечного напряжения. На рисунке 13 приведена типичная зависимость напряжения “плавающего заряда” от температуры, поддерживаемая выпрямителем содержания.
4. Конечное напряжение разряда закрытых аккумуляторов может быть ниже, чем у открытых, благодаря лучшей диффузии активных веществ. Кроме того, эти аккумуляторы допускают разряд при низких температурах (рис. 14), хотя отдают при этом меньшую ёмкость.
Несоблюдение перечисленных условий приводит к значительному сокращению
- 20-
Рисунок 13 - Зависимость напряжения “плавающего заряда” от температуры
Рисунок 14 - Конечное напряжение в зависимости от температуры
срока службы АБ. Так, например, повышение температуры на 100С сокращает срок службы герметичных АБ в два раза, если номинальные параметры рассчитаны на температуру +200С. На закрытые батареи температура оказывает меньшее влияние, но оно тоже существенно.
2.4.2 Электрические характеристики аккумуляторов
1. Емкость аккумулятора – это количество электричества, которое можно получить от аккумулятора в определенных условиях разряда.
Номинальная емкость аккумулятора, приведенная к условному 10-часовому режиму разряда при температуре среды 20оС, зависит от ряда факторов: тока разряда Iр, времени разряда tр и соответствующего ему коэффициента отдачи по ем-
- 21 –
кости hQ, температуры окружающей среды tср :
, (Aч)
где hQ находится в пределах от 0,51...1,0 ( см. далее таблицу 10 ).
2. Номинальное напряжение аккумулятора – это напряжение на выводах полностью заряженного аккумулятора в течение первого часа разряда током 10 – часового режима разряда при температуре электролита 20°С (UЭЛ..НОМ = 2 В).
3. Напряжение в конце разряда равно UЭЛ.КР = (1,75...1,8) В. При разряде аккумулятора токами, превышающими ток 10 – часового режима разряда, напряжение в процессе разряда будет понижаться быстрее, чем в 10 – часовом режиме и достигнет уровня 1,8 В, когда с аккумулятора еще не снята номинальная емкость. В таких случаях, показателем окончания разряда является величина напряжения на одном элементе.
4. Величина напряжения для заряда должна быть больше ЭДС (E), так как зарядному току приходится преодолевать внутреннее сопротивление аккумулятора (напряжение поляризации, равное IЗ×RВН): UЗАР=E+IЗ×RВН= (2,14+0,14)В.
5. Внутреннее сопротивление аккумулятора RВН складывается из сопротивления аккумуляторных пластин, сепаратора и электролита. Внутреннее сопротив-
ление увеличивается по мере разряда в силу уменьшения плотности электро-лита,
а также в связи с образованием сульфата свинца. Омическое сопротивление одно
го, полностью заряженного, элемента составляет примерно 0,0036 Ом, а в состоя
нии полного разряда – 0,007 Ом.
6. Плотность электролита заряженного аккумулятора составляет (1,25...1,3) г/см3 , в состоянии разряда – 1,05 г/см3.
2.5 Системы заземления
В задаче энергоснабжения предприятия связи системы заземления играют важную роль и как рабочий элемент энергораспределения, и как гарант защиты персонала от поражения электрическим током.
Заземление в электропитающих установках может выполняться на стороне переменного и на стороне постоянного тока.
2.5.1 Заземление на стороне переменного тока
В системах канализации электрической энергии находят применение четы-рех- и пятипроводные линии (трехпроводные линии используют крайне редко). Некоторые варианты систем заземления приведены на рисунке 15.
- 22-
а) система TN-S; б) система TN-C; в) система TT; г) система IT.
Рисунок 15 – Заземление на стороне переменного тока
На рисунке применяются следующие обозначения:
Первая буква - характер заземления источника питания:
Т - непосредственное присоединение одной точки токоведущих частей ис-
точника питания к земле;
I - все токоведущие части изолированы от земли или одна точка заземлена через сопротивление.
Вторая буква - характер заземления открытых проводящих частей электроустановки:
Т - непосредственная связь открытых проводящих частей с землей, незави-симо от характера связи источника питания с землей;
N - непосредственная связь открытых проводящих частей с точкой заземления источника питания (в системах переменного тока обычно заземляется нейтраль).
Последующие буквы - устройство нулевого рабочего и нулевого защитного проводников:
S - функции нулевого защитного и нулевого рабочего проводников обеспечиваются раздельными проводниками.
С - функции нулевого защитного и нулевого рабочего проводников объединены в одном проводнике.
нулевой рабочий проводник (N)
нулевой защитный проводник (РЕ)
совмещенный нулевой рабочий и защитный проводник (PEN)
- 23-
1 – заземление источника энергии;
2 – открытые проводящие части;
3 – заземление корпуса оборудования;
4 – заземляющий резистор;
L1, L2, L3 – фазы сети.
В системе ТN-S нулевой рабочий и нулевой защитный проводники работают раздельно; в системе TN-С нулевой рабочий и нулевой защитный проводники объединены по всей сети; в системе TT корпуса оборудования заземляются отдельно; в системе IT заземление нейтрали проводится через сопротивление.
Практические схемы заземления могут иметь и другие конфигурации.
2.5.2 Заземление на стороне постоянного тока
Решение о заземлении положительного или отрицательного полюса должно основываться на полярности питания аппаратуры и учитываться электрохимическая коррозия заземлителя. Существующие системы заземления цепей постоянного тока показаны на рисунке 16. Условные обозначения соответствуют схеме рис. 15.
Возможны и другие варианты заземления.
а) Система TN- S ; б) Система TN-C; в) Система TT; г) Система IT
Рисунок 16 – Заземление на стороне постоянного тока
- 24 -
2.5.3 Устройство заземлений
Заземляющие устройства делят на защитное и рабо
Дополнительная информация
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Электропитание устройств и систем телекоммуникаций
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: хх.05.2020
Рецензия:Уважаемый ххххххххххххх,
Рогулина Лариса Геннадьевна
Оценена Ваша работа по предмету: Электропитание устройств и систем телекоммуникаций
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: хх.05.2020
Рецензия:Уважаемый ххххххххххххх,
Рогулина Лариса Геннадьевна
Похожие материалы
Контрольная работа по дисциплине: Электропитание устройств и систем телекоммуникаций. Вариант 03
Roma967
: 1 февраля 2023
Содержание
Введение 3
1. Задание 4
2. Расчет и выбор оборудования электропитающей установки 5
2.1. Расчет аккумуляторных батарей 6
2.2. Выбор типового выпрямительного устройства 8
2.3. Расчет заземляющего устройства 12
2.4 Выбор автомата защиты 16
3. Составляем функциональную схему ЭПУ и перечень элементов с указанием типов всех, используемых устройств 17
Список литературы 21
1. Задание
В контрольной работе необходимо выполнить следующее:
- рассчитать количество и емкость элементов аккумулят
800 руб.
Контрольная работа по дисциплине: Электропитание устройств и систем телекоммуникаций. Вариант №03
IT-STUDHELP
: 7 января 2020
1. Задание
- рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип; найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство; выбрать вводный шкаф; рассчитать заземляющее устройство и выбрать автомат защиты.
- составить функциональную схему системы электропитания и перечень элементов с указанием всех типов выбранного оборудования
2. Исходные данные к расчету
Предпоследняя цифра пароля 0
Напряжение питания
450 руб.
Контрольная работа по дисциплине: Электропитание устройств и систем телекоммуникаций. Вариант №03
ramzes14
: 4 марта 2014
1. Задание
- рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип; найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство; выбрать вводный шкаф; рассчитать заземляющее устройство и выбрать автомат защиты.
- составить функциональную схему системы электропитания и перечень элементов с указанием всех типов выбранного оборудования
2. Исходные данные к расчету
Предпоследняя цифра номера зачетной книжки 0 Последняя
300 руб.
Электропитание устройств и систем телекоммуникаций
s800
: 20 ноября 2025
Лабораторная работа №1
Установка электропитания MPSU – 4000
Лабораторная работа №2
Система бесперебойного электропитания СБЭП-48/160
Лабораторная работа №3
ИБП переменного тока HFR Top Line-930
1200 руб.
Электропитание устройств и систем телекоммуникаций
s800
: 20 ноября 2025
Задание по 3 варианту см. скриншот
600 руб.
Электропитание устройств и систем телекоммуникаций
Dhtvc
: 31 марта 2023
ЛР1 Установка электропитания MPSU – 4000
ЛР2 Система бесперебойного электропитания СБЭП-48/160
ЛР3 ИБП переменного тока HFR Top Line-930
150 руб.
Электропитание устройств и систем телекоммуникаций
Аноним
: 31 октября 2018
В контрольной работе необходимо выполнить следующее:
- рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип; найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство; выбрать вводный шкаф; рассчитать заземляющее устройство и выбрать автомат защиты.
- составить функциональную схему системы электропитания и перечень элементов с указанием всех типов выбранного оборудования.
Таблица 1
Предпоследняя цифра пароля 0
Напр
90 руб.
Электропитание устройств и систем телекоммуникаций
Andrey10
: 5 апреля 2018
ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ
И СИСТЕМ ТЕЛЕКОММУНИКАЦИЙ
Вариант 40
Задание
Предпоследняя цифра номера зачетной книжки 4
Напряжение фазы питающей сети Uф, В 220
Частота тока питающей сети fc, Гц 60
Число фаз сети, m 3
Пульсность сетевого выпрямителя p 3
Относительное изменение напряжения пи-
тающей сети:
в сторону увеличения а макс
в сторону уменьшения а мин 0,1 0,2
Частота преобразования fn, кГц 25
Диапазон рабочих температур, ̊ С -20...+40
Последняя цифра номера
зачетной книжки 0
U0, В 5,0
I0 ма
250 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.