Теория сложности вычислительных процессов и структур. Билет №5
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 19.06.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 19.06.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Похожие материалы
Теория сложности вычислительных процессов и структур Билет 5
maksim3843
: 6 марта 2023
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Комментарии: Уважаемый студент, дистанционного обучения,
300 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 5.
nik200511
: 18 декабря 2018
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
21 руб.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
wchg
: 15 октября 2013
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. В скриншоте.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
79 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №5
Roma967
: 25 сентября 2015
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 4 7 1
2 0 5 9 6
4 5 0 8 3
7 9 8 0 1
1 6 3 1 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Теория сложности вычислительных процессов и структур 8 билет
Владислав161
: 5 октября 2023
Экзамен
По дисциплине “Теория сложности вычислительных процессов и структур”
400 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Владислав161
: 5 октября 2023
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
300 руб.
Другие работы
Международная экономическая интеграция: сущность, причины, виды, развитие
evelin
: 10 сентября 2013
ие…………………………………………………………………………..3
1.Сущность международной экономической интеграции…………………....6
1.1 Причины и формы развития международной экономической интеграции…………………………………………………………………….….7
1.2 Предпосылки международной экономической интеграции…………….10
1.3 Факторы развития международной экономической интеграции………..11
1.4 Признаки интеграции……………………………………………………...13
2. Объективные основы и этапы экономической интеграции……………….16
2.1 Этапы экономической интеграции………………………………………...18
2
5 руб.
Проектирование технологического процесса детали типа Корпус
gurasic
: 1 февраля 2010
В курсовом проекте рассмотрен действующий технологический процесс детали типа корпус. В курсовом проекте рассмотрены способы получения заготовки, произведен анализ карт технологического процесса, анализ операционных эскизов, построена размерно – точностная схема. На базе действующего технологического процесса разработан проектный технологический процесс, обеспечивающий выполнение всех размеров.
Инженерная графика. Упражнение №37. Вариант №3. Призма с отверстиями
Чертежи
: 2 декабря 2020
Все выполнено в программе КОМПАС 3D v16.
Миронов Б.Г., Миронова Р.С., Пяткина Д.А., Пузиков А.А. - Сборник заданий по инженерной графике с примерами выполнения чертежей на компьютере.
Упражнение 37. Вариант 3. Призма с отверстиями.
Задание: Выполнить в трёх проекциях чертеж полого геометрического тела со сквозным боковым отверстием, форма которого задана на фронтальной проекции. На горизонтальной проекции достроить недостающие линии. Проставить размеры.
В состав работы входят три файла:
- 3D
80 руб.
Задание 72. Вариант 14 - Соединения резьбовые
Чертежи по сборнику Боголюбова 2007
: 28 октября 2024
Возможные программы для открытия данных файлов:
WinRAR (для распаковки архива *.zip или *.rar)
КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d
Любая программа для ПДФ файлов.
Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007.
Задание 72. Вариант 14 - Соединения резьбовые.
Перечертить изображения деталей в масштабе 1:1. Изобразить упрощенно по ГОСТ 2.315-68 соединение деталей шпилькой, винтом и болтом (см. скриншот задания)
В состав выполненной работы входят
150 руб.