Теория сложности вычислительных процессов и структур. Билет №5
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 19.06.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 19.06.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Похожие материалы
Теория сложности вычислительных процессов и структур Билет 5
maksim3843
: 6 марта 2023
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Комментарии: Уважаемый студент, дистанционного обучения,
300 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 5.
nik200511
: 18 декабря 2018
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
21 руб.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
wchg
: 15 октября 2013
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. В скриншоте.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
79 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Учеба "Под ключ"
: 25 января 2026
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0
500 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №5
Roma967
: 25 сентября 2015
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 4 7 1
2 0 5 9 6
4 5 0 8 3
7 9 8 0 1
1 6 3 1 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Владислав161
: 5 октября 2023
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
300 руб.
Другие работы
Гидрохимические методы исследования водоемов
alfFRED
: 3 сентября 2013
Большинство известных элементов, входящих в состав вод в сравнительно больших количествах, существуют в виде ионов. Их можно разделить на три группы.
1. группа - ионы, составляющие основную часть природных вод:
катионы: K, Na, Ca, Mg
анионы: Cl, SO4, CO3, HCO3
2. группа - ионы, находящиеся в малых количествах в водах специального состава:
катионы: Ba, Pb, Zn, Cu, Mn, Fe, Fe, Al
анионы: Br, I, PO4
3. группа - ионы, находящиеся в загрязненных водах:
NO2, NO3, S, PO4 Химические методы анали
10 руб.
Задачник по гидравлике с примерами расчетов СГАСУ Задача 1.8 Вариант 6
Z24
: 14 октября 2025
Стальной трубопровод длиной l и диаметром d при атмосферном давлении p0 полностью заполнен минеральным маслом. Определить, какой дополнительный объём масла необходимо подать в полость трубы при гидравлическом испытании под давлением p. Коэффициент сжимаемости масла βV = 6,6·10-10 м²/Н. Деформацией стенок трубы пренебречь.
120 руб.
Грохот эксцентриковый марки СМ-61
evelin
: 4 февраля 2020
Задание...................................................................................................................2
Введение.................................................................................................................3
1. Обзор – назначение и область применения, состояние отрасли...................
2. (обзор и сравнение с зарубежными машинами).
3. Расчет геометрических параметров:,
3.1 Частоты вращения;
3.2 Кинематического привода;
Метрология, стандартизация и сертификация. Лабораторная работа №1. 4 семестр 2 вариант.
qawsedrftgyhujik
: 21 июня 2011
1. Цель работы.
Ознакомление с упрощенной процедурой обработки результатов прямых измерений с многократными наблюдениями. Получение, применительно к упрощенной процедуре, навыков обработки результатов наблюдений, оценка погрешностей результатов измерений и планирование количества наблюдений.
2. Контрольная задача.
В нормальных условиях произведено пятикратное измерение частоты. Класс точности прибора γ задан в таблице 2. Предельное значение шкалы 150 Гц. Используя результаты наблюдений (см.
300 руб.