Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №15

Состав работы

material.view.file_icon A43C812A-9784-4228-8AB4-9E44C9146C9B.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет No15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×4],M2[4×8],M3[8×2],M4[2×6],M5[6×7].
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
070123
700652
000050
160063
255607
320370

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 07.01.2021
Рецензия: Уважаемый,

Галкина Марина Юрьевна

Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15.
Билет №15 1. Оптимальным образом расставить скобки при перемножении следующих матриц: . 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
User teacher-sib : 30 апреля 2021
250 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15. promo
Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен.
Задание экзамена на скриншоте. Билет №15 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User 321 : 22 октября 2019
200 руб.
Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен. promo
Экзамен. Билет-15.Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User Madam : 25 сентября 2018
50 руб.
Экзамен. Теория сложностей вычислительных процессов и структур. Билет 15
Экзамен Теория сложностей вычислительных процессов и структур Билет 15 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
User Fayst13 : 25 октября 2015
250 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Психологические аспекты деятельности страхового агента
Введение 1. Особенности психологии страхования 2. Психологический портрет успешного агента 2.1 Профессиограмма страхового агента 2.2 Ведущие профессиональные качества и личностные характеристики. 2.3 Итак, кто же такой страховой агент? 2.4 Душевный настрой. 3. Этапы деятельности агента 3.1 Первый контакт 3.2 Внешний вид 3.3 Визуальный контакт 3.4 Аудиальный контакт. Войти и представиться. 3.5 Искусство вести переговоры. 4. Где взять успешного страхового агента? Список и
User Qiwir : 11 октября 2013
20 руб.
Расчет аналоговых и дискретных устройств связи. Вариант №38
Спроектировать дискретный фильтр, выделяющий гармоническое колебание заданной частоты из сигнала на выходе нелинейного преобразователя и удовлетворяющий условиям, указанным в таблице 1. Схема (а) 2Т658В fг = 19,7 кГц Rк = 1,5 кОм Uпит. авт. = 22 В Схема 3.2в 2Д104А Uо = -0,2 В Um = 1,0 В n=3 ΔА = 1 дБ Amin. = 24 дБ m=2
User b1nom : 22 января 2018
970 руб.
Расчет аналоговых и дискретных устройств связи. Вариант №38
Человеко-машинное взаимодействие. Экзамен. Билет № 5.
Задание 1 Программа Points.exe предназначена для решения следующей задачи: Задано множество М точек на плоскости. Определить, верно ли, что для каждой точки A, принадлежащей М, существует точка В, принадлежащая М (А не равно В) такая, что не существует двух точек множества М, лежащих по разные стороны от прямой АВ. (Вам не нужно вдаваться в подробности алгоритма решения данной задачи). Пользователь может задать множество точек вручную, либо выбрать случайное заполне-ние. Для этого он может
User nik200511 : 4 июня 2015
293 руб.
up Наверх