Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №15

Состав работы

material.view.file_icon A43C812A-9784-4228-8AB4-9E44C9146C9B.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет No15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×4],M2[4×8],M3[8×2],M4[2×6],M5[6×7].
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
070123
700652
000050
160063
255607
320370

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 07.01.2021
Рецензия: Уважаемый,

Галкина Марина Юрьевна

Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15.
Билет №15 1. Оптимальным образом расставить скобки при перемножении следующих матриц: . 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
User teacher-sib : 30 апреля 2021
250 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15. promo
Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен.
Задание экзамена на скриншоте. Билет №15 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User 321 : 22 октября 2019
200 руб.
Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен. promo
Экзамен. Билет-15.Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User Madam : 25 сентября 2018
50 руб.
Экзамен. Теория сложностей вычислительных процессов и структур. Билет 15
Экзамен Теория сложностей вычислительных процессов и структур Билет 15 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
User Fayst13 : 25 октября 2015
250 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Сетевые технологии высокоскоростной передачи данных. Вариант №11.
Задание 1 Определить среднее значение величины битовой скорости в локальной сети передачи данных Ethernet с виртуальными каналами услуг. Опираясь на рассчитанную величину битовой скорости выбрать модель коммутаторов, привести их технические характеристики. Сеть передачи данных предприятия состоит из трех узлов, соединенных в топологию «кольцо». Исходные данные приведены в таблицах 1.1, 1.2. Таблица 1.1 – Исходные данные, определяемые по последней цифре пароля Последняя цифра студенческого билет
User banderas0876 : 16 марта 2021
200 руб.
Сетевые технологии высокоскоростной передачи данных. Вариант №11.
Екосистеми світу
Зміст 1. Класифікація основних екосистем світу 2. Тундри 3. Лісові екосистеми помірного поясу 3.1 Тайга 3.2 Змішані та листяні ліси помірної зони 4. Вічнозелений тропічний дощовий ліс 5. Степи 6. Пустелі 7. Болота 8. Водні екосистеми 8.1. Прісноводні екосистеми 8.2. Екосистеми світового океану Висновок 1. Класифікація основних екосистем світу На сьогоднішній час на планеті Земля всі екосистеми можна поділити на дві частини: природні та штучні. Такий поділ виправданий у зв'язку із наростаючим вп
User Slolka : 17 марта 2013
10 руб.
Бруй Л.П. Техническая термодинамика ТОГУ Задача 2 Вариант 07
Расчет политропного процесса сжатия газовой смеси в компрессоре Рабочее тело – газовая смесь, имеющая тот же состав, что и в задаче №1 (в процентах по объему). Первоначальный объем, занимаемый газовой смесью, — V1 (табл. 2). Начальные параметры состояния: давление р1=0,1 МПа, температура t1=27 ºC. Процесс сжатия происходит при показателе политропы n. Давление смеси в конце сжатия р2, МПа (табл. 3). Определить: 1) массу газовой смеси; 2) удельные объемы смеси в начале и в конце процесса;
User Z24 : 12 января 2026
350 руб.
Бруй Л.П. Техническая термодинамика ТОГУ Задача 2 Вариант 07
Бруй Л.П. Техническая термодинамика и теплопередача ТОГУ Задача 8 Вариант 45
пределить поверхность нагрева рекуперативного теплообменника (ТО), в котором происходит нагрев воздуха дымовыми газами, при прямоточной и противоточной схемах включения теплоносителей. Температуру воздуха, поступающего в ТО, принять t′2=30 ºC. Количество подогреваемого воздуха V и коэффициент теплопередачи от дымовых газов к воздуху K взять из табл. 6. Температуру воздуха на выходе из ТО — t″2, температуру дымовых газов на входе в ТО — t′1 и температуру дымовых газов на выходе из ТО — t″1 взять
User Z24 : 14 января 2026
250 руб.
Бруй Л.П. Техническая термодинамика и теплопередача ТОГУ Задача 8 Вариант 45
up Наверх