Лабораторная работа 1-3 по дисциплине: Теория телетрафика и анализ систем беспроводной связи. Вариант 04
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- MathCAD
- Microsoft Excel
Описание
ЛАБОРАТОРНАЯ РАБОТА 1
Применение B-формулы Эрланга в сетях с коммутацией каналов
Цель работы: Освоить применение формулы Эрланга для расчёта вероятности блокировки системы и необходимого количества каналов в сети.
Содержание
1 Задание в соответствии с вариантом 3
2 Функции для расчёта вероятности блокировки и количества обслуживающих приборов (каналов) 4
3 Выполнение лабораторной работы в соответствии с заданием с описанием всех значащих этапов 5
4 Вывод по проделанной работе 9
5 Ответы на контрольные вопросы 11
Список литературы 15
1 Задание в соответствии с вариантом
В лабораторной работе, задавая сетевые параметры в соответствии с вариантом (табл. 1), необходимо произвести расчёт вероятности блокировки P_b (λ/μ,m) по ф. (7.21, [1]) и построить её зависимости от входной нагрузки λ/μ и количества каналов m.
Затем, используя рекуррентное соотношение ф. (7.22, [1]) определить число каналов, необходимое для обеспечения заданного значения вероятности блокировки в соответствии с вариантом (табл. 1). Построить зависимость количества каналов от входной нагрузки λ/μ.
Таблица 1 – Параметры СМО для выполнения лабораторной работы No 1 вариант 4
μ, с-1 0.2
Диапазон , с-1 0..5
Pb Диапазон m
0.05 10,20..120 4
Контрольные вопросы:
1. Дайте определение системы массового обслуживания.
2. Дайте определения процесса размножения и гибели.
3. Приведите особенности модели Эрланга.
4. Для чего применяется B-формула Эрланга?
5. В каких системах можно применить C-формулу Эрланга?
6. Что такое коэффициент загрузки СМО?
7. Дайте пояснения к обозначению СМО, которая описывает модель Эрланга.
ЛАБОРАТОРНАЯ РАБОТА 2
Применение формулы Полячека-Хинчина
Цель работы: Изучить применение формулы Полячека-Хинчина для вычисления вероятностно-временных характеристик систем массового обслуживания с произвольным распределением времени обслуживания.
Содержание
1 Задание 3
2 Выполнение лабораторной работы в соответствии с заданием с описанием всех значащих этапов 4
3 Вывод по работе 12
4 Контрольные вопросы 13
Список литературы 15
1 Задание
В данной лабораторной работе предполагается сравнить вероятностно-временные характеристики систем массового обслуживания типа M/M/1, M/D/1, полученные с помощью формул Полячека-Хинчина с характеристиками СМО, заданного по варианту типа (табл. 2).
Используя данные из табл. 2, задать параметры исследуемых систем массового обслуживания. Вычислить значения нормированной дисперсии исследуемых СМО ф. (8.6). Для вычисления математического ожидания и дисперсии воспользоваться любым справочником по теории вероятностей и математической статистике, например, [5] (или см. ПРИЛОЖЕНИЕ 1).
По ф. (8.7)–(8.10) получить искомые характеристики:
- среднее количество заявок в СМО ̄N;
- среднее количество заявок в очереди СМО ̄(N_q );
- среднее время пребывания заявки в СМО ̄T;
- среднее время ожидания заявкой обслуживания ̄W.
Примечание 5: При этом диапазон изменения интенсивности входящего в СМО потока заявок задать, начиная с 0, и таким образом, чтобы сохранить эргодичность системы (ρ=λ⋅x ̄,ρ<1).
Построить семейство зависимостей описанных выше характеристик от входной нагрузки для различных СМО.
Объяснить полученные результаты.
Таблица 2 – Параметры для выполнения лабораторной работы No 2 вариант 4
μ, с-1 5
Дополнительные параметры распределения Распределение времени обслуживания
- Максвелла 4
Контрольные вопросы:
1. Опишите систему массового обслуживания M/G/1.
2. Почему анализ системы с последействием затруднён?
3. В чём заключается метод вложенной цепи Маркова?
4. Как выглядит матрица вероятностей переходов вложенной цепи Маркова?
5. Дайте пояснения к правой части формулы Полячека-Хинчина.
6. Что такое нормированная дисперсия времени обслуживания?
ЛАБОРАТОРНАЯ РАБОТА 3
Уравнения глобального баланса
Цель работы: Научиться составлять и решать системы уравнений глобального баланса для анализа замкнутых однородных марковских СеМО, а также применять результаты расчёта для вычисления узловых и сетевых характеристик СеМО.
1 Задание в соответствии с вариантом
Применяя метод составления и решения системы уравнений глобального баланса замкнутой однородной марковской СеМО в соответствии с вариантом (табл. 3), определить узловые характеристики СеМО:
- интенсивности потоков заявок, входящих в узлы;
- коэффициенты загрузки узлов;
- коэффициенты простоя узлов;
- среднее количество заявок в узлах;
- среднее количество заявок в очередях узлов;
- среднее время пребывания заявки в узле;
- среднее время ожидания заявкой обслуживания в узле;
и сетевые характеристики СеМО:
- пропускная способность СеМО;
- среднее количество заявок в очередях СеМО;
- среднее время пребывания заявки в СеМО;
- среднее время ожидания заявкой обслуживания в СеМО.
Сделать выводы по проделанной работе. Например, выявлены ли в результате вычислений узкие места в моделируемой сети, возможно ли решение этих проблем и, если да, то за счёт каких ресурсов и т.п.
Вариант 4
No
Схема
14
Считать все СМО – марковскими с дисциплинами обслуживания – FCFS (первым пришёл, первым обслужился или обслуживание в порядке поступления).
Количество заявок в СеМО, состоящих из четырех узлов,K = 2.
μ, c-1 m ТОПОЛОГИЯ
14
3,4; 1,8; 2,3; 3,2 1,2,1,3 4
Контрольные вопросы:
1. Дайте определение сети массового обслуживания.
2. Поясните наличие классов заявок.
3. Приведите классификацию сетей массового обслуживания.
4. Что такое маршрутная матрица?
5. Охарактеризуйте пространство состояний замкнутой сети массового обслуживания.
6. В чём заключается особенность марковских СеМО?
7. Назовите известные дисциплины обслуживания заявок.
8. Что такое узловые характеристики?
9. Что включают в себя уравнения глобального баланса?
10. Перечислите исходные данные для анализа замкнутой СеМО.
Применение B-формулы Эрланга в сетях с коммутацией каналов
Цель работы: Освоить применение формулы Эрланга для расчёта вероятности блокировки системы и необходимого количества каналов в сети.
Содержание
1 Задание в соответствии с вариантом 3
2 Функции для расчёта вероятности блокировки и количества обслуживающих приборов (каналов) 4
3 Выполнение лабораторной работы в соответствии с заданием с описанием всех значащих этапов 5
4 Вывод по проделанной работе 9
5 Ответы на контрольные вопросы 11
Список литературы 15
1 Задание в соответствии с вариантом
В лабораторной работе, задавая сетевые параметры в соответствии с вариантом (табл. 1), необходимо произвести расчёт вероятности блокировки P_b (λ/μ,m) по ф. (7.21, [1]) и построить её зависимости от входной нагрузки λ/μ и количества каналов m.
Затем, используя рекуррентное соотношение ф. (7.22, [1]) определить число каналов, необходимое для обеспечения заданного значения вероятности блокировки в соответствии с вариантом (табл. 1). Построить зависимость количества каналов от входной нагрузки λ/μ.
Таблица 1 – Параметры СМО для выполнения лабораторной работы No 1 вариант 4
μ, с-1 0.2
Диапазон , с-1 0..5
Pb Диапазон m
0.05 10,20..120 4
Контрольные вопросы:
1. Дайте определение системы массового обслуживания.
2. Дайте определения процесса размножения и гибели.
3. Приведите особенности модели Эрланга.
4. Для чего применяется B-формула Эрланга?
5. В каких системах можно применить C-формулу Эрланга?
6. Что такое коэффициент загрузки СМО?
7. Дайте пояснения к обозначению СМО, которая описывает модель Эрланга.
ЛАБОРАТОРНАЯ РАБОТА 2
Применение формулы Полячека-Хинчина
Цель работы: Изучить применение формулы Полячека-Хинчина для вычисления вероятностно-временных характеристик систем массового обслуживания с произвольным распределением времени обслуживания.
Содержание
1 Задание 3
2 Выполнение лабораторной работы в соответствии с заданием с описанием всех значащих этапов 4
3 Вывод по работе 12
4 Контрольные вопросы 13
Список литературы 15
1 Задание
В данной лабораторной работе предполагается сравнить вероятностно-временные характеристики систем массового обслуживания типа M/M/1, M/D/1, полученные с помощью формул Полячека-Хинчина с характеристиками СМО, заданного по варианту типа (табл. 2).
Используя данные из табл. 2, задать параметры исследуемых систем массового обслуживания. Вычислить значения нормированной дисперсии исследуемых СМО ф. (8.6). Для вычисления математического ожидания и дисперсии воспользоваться любым справочником по теории вероятностей и математической статистике, например, [5] (или см. ПРИЛОЖЕНИЕ 1).
По ф. (8.7)–(8.10) получить искомые характеристики:
- среднее количество заявок в СМО ̄N;
- среднее количество заявок в очереди СМО ̄(N_q );
- среднее время пребывания заявки в СМО ̄T;
- среднее время ожидания заявкой обслуживания ̄W.
Примечание 5: При этом диапазон изменения интенсивности входящего в СМО потока заявок задать, начиная с 0, и таким образом, чтобы сохранить эргодичность системы (ρ=λ⋅x ̄,ρ<1).
Построить семейство зависимостей описанных выше характеристик от входной нагрузки для различных СМО.
Объяснить полученные результаты.
Таблица 2 – Параметры для выполнения лабораторной работы No 2 вариант 4
μ, с-1 5
Дополнительные параметры распределения Распределение времени обслуживания
- Максвелла 4
Контрольные вопросы:
1. Опишите систему массового обслуживания M/G/1.
2. Почему анализ системы с последействием затруднён?
3. В чём заключается метод вложенной цепи Маркова?
4. Как выглядит матрица вероятностей переходов вложенной цепи Маркова?
5. Дайте пояснения к правой части формулы Полячека-Хинчина.
6. Что такое нормированная дисперсия времени обслуживания?
ЛАБОРАТОРНАЯ РАБОТА 3
Уравнения глобального баланса
Цель работы: Научиться составлять и решать системы уравнений глобального баланса для анализа замкнутых однородных марковских СеМО, а также применять результаты расчёта для вычисления узловых и сетевых характеристик СеМО.
1 Задание в соответствии с вариантом
Применяя метод составления и решения системы уравнений глобального баланса замкнутой однородной марковской СеМО в соответствии с вариантом (табл. 3), определить узловые характеристики СеМО:
- интенсивности потоков заявок, входящих в узлы;
- коэффициенты загрузки узлов;
- коэффициенты простоя узлов;
- среднее количество заявок в узлах;
- среднее количество заявок в очередях узлов;
- среднее время пребывания заявки в узле;
- среднее время ожидания заявкой обслуживания в узле;
и сетевые характеристики СеМО:
- пропускная способность СеМО;
- среднее количество заявок в очередях СеМО;
- среднее время пребывания заявки в СеМО;
- среднее время ожидания заявкой обслуживания в СеМО.
Сделать выводы по проделанной работе. Например, выявлены ли в результате вычислений узкие места в моделируемой сети, возможно ли решение этих проблем и, если да, то за счёт каких ресурсов и т.п.
Вариант 4
No
Схема
14
Считать все СМО – марковскими с дисциплинами обслуживания – FCFS (первым пришёл, первым обслужился или обслуживание в порядке поступления).
Количество заявок в СеМО, состоящих из четырех узлов,K = 2.
μ, c-1 m ТОПОЛОГИЯ
14
3,4; 1,8; 2,3; 3,2 1,2,1,3 4
Контрольные вопросы:
1. Дайте определение сети массового обслуживания.
2. Поясните наличие классов заявок.
3. Приведите классификацию сетей массового обслуживания.
4. Что такое маршрутная матрица?
5. Охарактеризуйте пространство состояний замкнутой сети массового обслуживания.
6. В чём заключается особенность марковских СеМО?
7. Назовите известные дисциплины обслуживания заявок.
8. Что такое узловые характеристики?
9. Что включают в себя уравнения глобального баланса?
10. Перечислите исходные данные для анализа замкнутой СеМО.
Дополнительная информация
Оценка: Зачет
Дата оценки: 09.04.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 09.04.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Лабораторные работы 1-3 по дисциплине: Теория телетрафика и анализ систем беспроводной связи. Вариант №04
IT-STUDHELP
: 27 июня 2023
Лабораторная работа 1
Применение B-формулы Эрланга в сетях с коммутацией каналов
Цель работы
Освоить применение формулы Эрланга для расчёта вероятности блокировки системы и необходимого количества каналов в сети.
Исходные данные
Таблица 1 – Исходные данные
Показатель Значение
Вариант 04
Показатель μ, с-1 0,2
Диапазон , с-1 0..5
Вероятность Pb 0,05
Диапазон m 10,20..120
Задание
Для выполнения работы необходимо изучить материалы лекции No7 «Процессы размножения и гибели в установившемся режи
1500 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Теория телетрафика и анализ систем беспроводной связи. Вариант №04
IT-STUDHELP
: 27 июня 2023
Контрольная работа
Вариант No04
В работе приведен расчет характеристик канала передачи данных под управлением протокола HDLC при помощи аналитической модели в виде системы массового обслуживания M/G/1 с приоритетом. Получены и проанализированы вероятностно-временные характеристики данной сети.
------------------------------------------------------------------------------
Задание:
При выполнении контрольной работы необходимо построить математическую модель канального уровня телекоммуникационн
1850 руб.
Лабораторные работы 1-3 по дисциплине: Теория телетрафика и анализ систем беспроводной связи. Вариант №3
IT-STUDHELP
: 5 декабря 2022
Лабораторная работа No1
по дисциплине:
«Теория телетрафика и анализ систем беспроводной связи»
Задание в соответствии с вариантом
В лабораторной работе, задавая сетевые параметры в соответствии с вариантом (табл. 1), необходимо произвести расчёт вероятности блокировки P_b (λ/μ,m) по ф. (7.21, [1]) и построить её зависимости от входной нагрузки λ/μ и количества каналов m.
Затем, используя рекуррентное соотношение ф. (7.22, [1]) определить число каналов, необходимое для обеспечения заданного зна
1500 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
ЛАБОРАТОРНАЯ РАБОТА 1
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 4
Применение B-формулы Эрланга в сетях с коммутацией каналов
300 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
ЛАБОРАТОРНАЯ РАБОТА 2
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 7
Применение формулы Полячека-Хинчина
450 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
ЛАБОРАТОРНАЯ РАБОТА 2
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 4
Применение формулы Полячека-Хинчина
450 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 4
300 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 7
300 руб.
Другие работы
Дискретная математика. Экзаменационная работа. Билет 9. Вариант 8.
Mental03
: 2 июня 2015
Экзаменационная работа по Дискретной Математике. Билет 9. Вариант 8.
1. Цикломатическое число графа. Теорема о цикломатическом числе.
2. Заданы универсальное множество U и три его подмножества A, B, C.
Проверить (доказать или опровергнуть) справедливость соотношения:
.
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства симметричности и рефлексивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойствен
Муфта сцепления фрикционная - 00-000.06.10.10.00
HelpStud
: 6 октября 2025
Муфта предназначена для передачи крутящего момента, а также для включения и выключения механизма при постоянно работающем двигателе.
В муфту входят следующие стандартные изделия и детали без чертежей: поз. 13 - кольцо запорное O 125 из проволоки 6,0-II ГОСТ 9389-75 (1шт.); поз. 14 - кольцо запорное O 278 из проволоки 8,0-II ГОСТ 9389-75 (1 шт.); поз. 15 - винт ВМ12 - 8g х 25.56.019 ГОСТ 1491-80 (2 шт.); поз. 16 - винт ВМ12 - 8g х 40.56.019 ГОСТ 1491-80 (6 шт.); поз. 17 - шпонка 40 x 22 x 100 Г
500 руб.
Подводные лодки проект «633 Ромео»
evelin
: 16 ноября 2012
Проектирование ПЛ «633 Ромео» было начато по Постановлению СМ №1454-808 от 9.08.1955 г. Проектирование велось в ЦКБ-112, главным конструктором проекта был З.А.Дерибин, заместителями—А.К.Назаров и Е.В.Крылов, главным наблюдающим от ВМФ был И.И.Чуфрин.
Технический проект «633 Ромео» был утвержден постановлением СМ №1117-580 от 15 августа 1956 года.
Подводная лодка «633 Ромео» двухкорпусная. Обводы корпуса ПЛ в основном подчинены обеспечению большей ходкости в подводном положении за счет надводных
15 руб.
Интернет технологии. Лабораторные работы №№1-5
Bodibilder
: 15 марта 2019
Лабораторная работа N 1
Базовое форматирование текста
Задание
Записать к себе в директорию шаблон html-файла.
Для этого щелкнуть мышкой по данной гиперссылке: шаблон html-файла.
Затем, в открывшемся окне браузера войти в пункт меню "Файл"®"Сохранить как".
Задать имя файла (и путь к нему) и выбрать "Тип файла: Веб-страница, только HTML".
Аналогичного результата можно добиться, если в открывшемся окне браузера щелкнуть правой кнопкой мышки в любом месте (кроме меню!), а затем выбрать "Просмотр в
20 руб.