Курсовая и Лабораторные работы 1-3 по дисциплине: Алгоритмы и вычислительные методы оптимизации. Вариант №8
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Курсовая работа
Вариант No8
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=px_1+px_2→max
{(a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Номер варианта а b с а1 b1 с1 а2 b2 с2 p1 p2 Номера вопросов для защиты
8 14 13 36 3 2 3 1 1 7 6 1 4,9,12,17
------------------------------------------------------------------------------
4. Как по симплексной таблице определить, что задача не имеет решения (функция не ограничена)?
9. Какая переменная называется искусственной, когда она вводится и какой коэффициент соответствует ей в функции?
12. Что такое зацикливание и когда оно может произойти?
17. Когда на переменные двойственной задачи накладывается условие неотрицательности?
=============================================
=============================================
Лабораторная работа No1
Вариант 8
Решения систем линейных уравнений методом Жордана-Гаусса
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
Написать программу, находящую решение системы линейных уравнений методом Жордана-Гаусса с выбором главного элемента в столбце.
5x_1+16x_2+12x_3+11x_4-7x_5=62
17x_1+12x_2+x_3+18x_4+9x_5=298
8. 15x_1-15x_2+3x_3+x_4-7x_5=-127
-14x_1-13x_2-7x_3-5x_4-11x_5=-190
-x_1+13x_2-16x_3-6x_4+8x_5=152
=============================================
Лабораторная работа No2
Вариант 8
Моделирование матричной игры 2×2
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
1. Решите аналитически матричную игру 2×2, заданную платежной матрицей (найдите оптимальные стратегии игроков и цену игры).
2. Напишите программу, моделирующую результаты игры, разыграв 100 партий. Программа должна выводить:
результаты моделирования в виде таблицы с заголовками:
Номер партии Случайное число для игрока А Стратегия игрока А Случайное число для игрока В Стратегия игрока В Выигрыш игрока А Накопленный выигрыш А Средний выигрыш А
*средний выигрыш игрока А находится как отношение накопленного выигрыша к количеству сыгранных партий.
относительные частоты использования чистых стратегий каждым игроком.
3. Сравните результаты, полученные в п.1 и 2 и сделайте выводы.
8. (5 9)
(10 8)
=============================================
Лабораторная работа No3
Вариант 8
Решение задачи нелинейного программирования градиентными методами
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, описание используемого метода, обоснования выбора начального приближения решения исходной задачи, исходный текст программы (с указанием языка реализации), результаты работы программы с промежуточными вычислениями (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
Написать программу, находящую решение задачи нелинейного программирования методом Эрроу-Гурвица с точностью 0.0001. В качестве значения возьмите 0.001.
см.фото
=============================================
Вариант No8
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=px_1+px_2→max
{(a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Номер варианта а b с а1 b1 с1 а2 b2 с2 p1 p2 Номера вопросов для защиты
8 14 13 36 3 2 3 1 1 7 6 1 4,9,12,17
------------------------------------------------------------------------------
4. Как по симплексной таблице определить, что задача не имеет решения (функция не ограничена)?
9. Какая переменная называется искусственной, когда она вводится и какой коэффициент соответствует ей в функции?
12. Что такое зацикливание и когда оно может произойти?
17. Когда на переменные двойственной задачи накладывается условие неотрицательности?
=============================================
=============================================
Лабораторная работа No1
Вариант 8
Решения систем линейных уравнений методом Жордана-Гаусса
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
Написать программу, находящую решение системы линейных уравнений методом Жордана-Гаусса с выбором главного элемента в столбце.
5x_1+16x_2+12x_3+11x_4-7x_5=62
17x_1+12x_2+x_3+18x_4+9x_5=298
8. 15x_1-15x_2+3x_3+x_4-7x_5=-127
-14x_1-13x_2-7x_3-5x_4-11x_5=-190
-x_1+13x_2-16x_3-6x_4+8x_5=152
=============================================
Лабораторная работа No2
Вариант 8
Моделирование матричной игры 2×2
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
1. Решите аналитически матричную игру 2×2, заданную платежной матрицей (найдите оптимальные стратегии игроков и цену игры).
2. Напишите программу, моделирующую результаты игры, разыграв 100 партий. Программа должна выводить:
результаты моделирования в виде таблицы с заголовками:
Номер партии Случайное число для игрока А Стратегия игрока А Случайное число для игрока В Стратегия игрока В Выигрыш игрока А Накопленный выигрыш А Средний выигрыш А
*средний выигрыш игрока А находится как отношение накопленного выигрыша к количеству сыгранных партий.
относительные частоты использования чистых стратегий каждым игроком.
3. Сравните результаты, полученные в п.1 и 2 и сделайте выводы.
8. (5 9)
(10 8)
=============================================
Лабораторная работа No3
Вариант 8
Решение задачи нелинейного программирования градиентными методами
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, описание используемого метода, обоснования выбора начального приближения решения исходной задачи, исходный текст программы (с указанием языка реализации), результаты работы программы с промежуточными вычислениями (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
Написать программу, находящую решение задачи нелинейного программирования методом Эрроу-Гурвица с точностью 0.0001. В качестве значения возьмите 0.001.
см.фото
=============================================
Дополнительная информация
Проверил(а): Галкина Марина Юрьевна
Оценка: Зачет
Дата оценки: 16.05.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Зачет
Дата оценки: 16.05.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Алгоритмы и вычислительные методы оптимизации. Вариант №8
IT-STUDHELP
: 9 июля 2020
Язык программирования: python
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
{█(Z(x_1,x_2 )=p_1 x_1+p_2 x_2→min@a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполне
800 руб.
Курсовая и Лабораторные работы 1-3 по дисциплине: Алгоритмы и вычислительные методы оптимизации. Вариант №4
IT-STUDHELP
: 14 ноября 2022
Вариант 4
Лабораторная работа No1
Решения систем линейных уравнений методом Жордана-Гаусса
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторну
1350 руб.
Курсовая и Лабораторная работа 1-3 по дисциплине: Алгоритмы и вычислительные методы оптимизации. Вариант 5
IT-STUDHELP
: 16 мая 2022
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
− файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, результаты выполнения аналитических расчетов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), список используемой литературы и интернет-источников;
− файл с исходным текстом программы (программу можно писать на любом языке пр
1500 руб.
Лабораторные работы 1-3 по дисциплине: Алгоритмы и вычислительные методы оптимизации. Вариант №8
IT-STUDHELP
: 16 мая 2023
Лабораторная работа No1
Вариант 8
Решения систем линейных уравнений методом Жордана-Гаусса
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную
900 руб.
Лабораторные работы 1-3 по дисциплине: Алгоритмы и вычислительные методы оптимизации. Вариант № 8
IT-STUDHELP
: 16 апреля 2021
Вариант No 8
Лабораторная работа No1 - Тема: Решения систем линейных уравнений методом Жордана-Гаусса
Задание на лабораторную работу
Написать программу, находящую решение системы линейных уравнений методом Жордана-Гаусса с выбором главного элемента в столбце.
Вариант выбирается по последней цифре пароля.
/ (5x_1+16x_2+12x_3+11x_4-7x_5=62
│ 17x_1+12x_2+x_3+18x_4+9x_5=298
{ 15x_1-15x_2+3x_3+x_4-7x_5=-127
│ -14x_1-13x_2-7x_3-5x_4-11x_5=-190
\ -x_1+13x_2-16x_3-6x_4+8x_5=152)
=
900 руб.
Алгоритмы и вычислительные методы оптимизации
Anza
: 22 марта 2021
Лабораторная работа №1
Решения систем линейных уравнений методом Жордана-Гаусса
Написать программу, находящую решение системы линейных уравнений методом Жордана-Гаусса с выбором главного элемента в столбце.
Вариант выбирается по последней цифре пароля.
100 руб.
Алгоритмы и вычислительные методы оптимизации
snapsik
: 8 марта 2021
Курсовая работа
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
1. Перейти к к
200 руб.
Курсовая работа "Алгоритмы и вычислительные методы оптимизации". Вариант №8
Daniil2001
: 8 мая 2023
Работа зачтена.
Программа написана на языке Python
99 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.