Дискретная математика 1, 2, 3 лабораторная работа и 1 Контрольная работа 15 вариант
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант 15
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,3),(b,4),(c,3),(c,4)}; P2 = {(1,1),(1,4),(2,1),(2,2),(2,4),(3,3)}.
No3 Задано бинарное отношение P Z2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P = {(x,y) | (x + y) нечетно}.
No4 Доказать утверждение методом математической индукции:
No5 Бригада из одиннадцати взломщиков одновременно выходит на грабеж четырех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по трем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 9, 10, 12? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x2·y2·z3, b=x2·y3·z, c=y4·z4 в разложении (3·x+5·y2+2·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 9·an+1 + 7·an = 0· и начальным условиям a1=5, a2=30.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл)
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v1 до остальных вершин графа, используя алгоритм Дейкстры.
_____________________________________________
Лабораторная работа No 1 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице, сопровождая необходимыми пояснениями.
_________________________________________
Лабораторная работа No 2 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
_________________
Лабораторная работа No 3 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,3),(b,4),(c,3),(c,4)}; P2 = {(1,1),(1,4),(2,1),(2,2),(2,4),(3,3)}.
No3 Задано бинарное отношение P Z2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P = {(x,y) | (x + y) нечетно}.
No4 Доказать утверждение методом математической индукции:
No5 Бригада из одиннадцати взломщиков одновременно выходит на грабеж четырех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по трем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 9, 10, 12? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x2·y2·z3, b=x2·y3·z, c=y4·z4 в разложении (3·x+5·y2+2·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 9·an+1 + 7·an = 0· и начальным условиям a1=5, a2=30.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл)
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v1 до остальных вершин графа, используя алгоритм Дейкстры.
_____________________________________________
Лабораторная работа No 1 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице, сопровождая необходимыми пояснениями.
_________________________________________
Лабораторная работа No 2 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
_________________
Лабораторная работа No 3 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Дополнительная информация
2023г. Зачет принимала Бах
Похожие материалы
Дискретная математика. 1-й вариант
Parallax
: 30 июля 2021
Задание № 1 Основы теории множеств (элементы множества, отображение множества, ответы на контрольные вопросы)
Задание № 2 Отношения (определение подмножеств, рефлексивность, транзитивность, симметричность, свойства отношения, интерпретация, графы, ответы на контрольные вопросы)
Задание № 3 Основы теории алгоритмов (жадный алгоритм, алгоритм прима, раскраска графа последовательным алгоритмом и алгоритмом Ершова А.П., ответы на контрольные вопросы)
Задание № 4 Методы сортировки (Сортировки: пузырь
400 руб.
Дискретная математика. 1-й вариант
m16devil
: 11 июня 2019
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
«Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна».
3. Для булевой функции найти методом преобразования минимальн
40 руб.
Контрольная работа по Дискретной математике 1 вариант
fominovich
: 5 сентября 2015
No1. Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A\\B) (A\\C) = A \\ (BC)
б) (AB)C=(AC)(BC)
No2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлекс
300 руб.
Ответы на тесты по дискретной математике 1 курс СИБГУТИ
orokysaki
: 20 марта 2023
Ответы на тесты по дискретной математике
350 руб.
Контрольная работа по Дискретной математике. 1-й вариант
frankov
: 14 мая 2016
Контрольная работа по Дискретной математике 1 вариант. Содержит 4 решенный задачи.
Оценка: зачет.
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
...
150 руб.
Дискретная математика. Билет №1
malinka1
: 29 сентября 2021
Определить понятие множества и его элементов. Какие есть способы задания множеств? Подмножества и собственные подмножества. Привести примеры.
Карта Карно – внешний вид, способ построения, использование для упрощения булевых функции. Привести примеры.
Используя методы комбинаторики, найти, сколько существует целых чисел между 0 и 1000, содержащих хотя бы одну цифру 4.
Построить все попарно неизоморфные деревья с шестью вершинами. Пояснить, что такое деревья. Дать понятие изоморфизма графов.
300 руб.
Дискретная математика. Вариант №1.
viktortehnik92
: 11 марта 2019
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
4. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти п
300 руб.
Дискретная математика. Вариант №1
pavel121
: 24 сентября 2018
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
1. “Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна”.
III. Для булевой функции найти методом преобразования минимальную ДНФ
50 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.