Лабораторная работа №3 по дисциплине: Интеллектуальные технологии информационной безопасности. “Регрессия”. Для всех вариантов

Состав работы

material.view.file_icon A825896B-1891-4A52-840A-CFD048FCAC22.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Лабораторная работа No3

“Регрессия”

Целью данной лабораторной работы является разработка программы, реализующей применение метода логистической регрессии к заданному набору данных.

В набор данных входят 2 файла, в «True» находится информация о правдивых новостных заметках, в «Fake.csv» находится информация о поддельных новостях. Каждый файл состоит из следующих полей:
1. (title) – заголовок статьи;
2. (text) – содержимое статьи;
3. (subject) – тип новости;
4. (date) – дата опубликования статьи.

Реализация регрессии в Scikit-Learn
На практике предлагается использовать проверенную и широко используемую библиотеку Scikit-Learn для реализации регрессии.
Следующая команда импортирует набор данных CSV, используя библиотеку pandas:
dataset = pd.read_csv('Weather.csv')
Чтобы увидеть статистические данные набора данных, можно использовать метод describe():
dataset.describe()
Затем разделяем 80% данных на обучающий набор, а 20% данных - на набор тестов, используя приведенный ниже код.
Переменная test_size - это то место, где мы на самом деле указываем пропорцию тестового набора.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Наконец, после разделения данных на обучающие и тестовые наборы, настало время обучить наш алгоритм. Для этого нужно импортировать класс LinearRegression, создать его экземпляр и вызвать fit() метод вместе с нашими данными обучения.
regressor = LinearRegression()
regressor.fit(X_train, y_train)
Теперь, когда мы обучили наш алгоритм, пришло время сделать некоторые прогнозы. Для этого будем использовать наши тестовые данные и посмотрим,
насколько точно алгоритм предсказывает процентную оценку. Чтобы сделать прогноз на тестовых данных, выполните следующий скрипт:
y_pred = regressor.predict(X_test)

Задание: используя модель логистической регрессии реализовать прогнозирование реалистичности статьи.
1. Необходимо построить модель для каждого из наборов, обучить её и сравнить полученные при помощи модели результаты с известными. Для обучения использовать 70% выборки, для тестирования 30%. Разбивать необходимо случайным образом, а, следовательно, для корректности тестирования качества модели, эксперимент необходимо провести не менее 10 раз и вычислить среднее значение качества регрессии.
2. Работу регрессии необходимо проверить на конкретном примере. При подаче на вход определённого объекта данных (заголовка статьи, текста, типа и даты) программа должна выводить тип статьи «Fake» или «Frue»,
выведенное значение необходимо проверить с тем, что находится в исходных данных.
Особенности работы с данными:
После загрузки данных в память необходимо пометить поддельные новости «0», а подлинные новости «1» для дальнейшей работы.
Для преобразования текста в частотные векторы слова использовать метод TfidfVectorizer().
В качестве отчёта требуется представить:
Работающую программу, в которой отражено использование метода логистической регрессии для предсказания типа статей.
Результаты 10 запусков отразить в таблице, где указать номер запуска и процент правильности предсказания типа статьи. Перед каждым запуском данные можно обработать с помощью метода shuffle().
Среднее значение предсказания типа статьи исходя из 10 запусков

Дополнительная информация

Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 3
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,

Ракитский Антон Андреевич
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Лабораторная работа 1. «Метод k ближайших соседей» Вариант 10 Выбор варианта: NC = 10 Тип классификатора: NВ = (NC mod 3) + 1 = 2 3. Метод парзеновского окна с фиксированным h. Вариант функции ядра для метода празеновского окна определяется по формуле: NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 2 2. T — треугольное K(x) = (1 − r)[r ≤ 1] Вариант файла с данными для классификации определяется по формуле: NФ = ((NC + 2) mod 5) + 1 = 3 Файл: data3.csv. 1 Результаты тестирования Надёжность предсказа
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Лабораторные работы 1 Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3. 2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро. ============================================= Лабораторная работа 2. «Решающие деревья» 1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса Таблица 1. Результаты N запусков Решающего дерева Максимальная глубина дерева (max_depth) Максимальное количеств
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Лабораторная работа 1. «Метод k ближайших соседей» Вариант 05 Выбор варианта: NC = 5 Тип классификатора: NВ = (NC mod 3) + 1 = 3 3. Метод парзеновского окна с относительным размером окна. Вариант функции ядра для метода празеновского окна определяется по формуле: NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1 1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1] Вариант файла с данными для классификации определяется по формуле: NФ = ((NC + 2) mod 5) + 1 = 3 Файл: data3.csv. 1 Результаты тестирования Над
User IT-STUDHELP : 19 июня 2023
1000 руб.
promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Контрольная работа по методам классификации Выбор варианта: N = 19 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=11. Обучающая последовательность и тестовый объект: 11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10). Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=3. Весовая функция: 3) — метод парзеновск
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19 promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Вариант No10 Контрольная работа Выбор варианта: N = 10 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=2 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=2 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=4 Обучающая последовательность и тестовый объект для метода ближайших соседей: 2) (X,Y)={(2,7,1), (6,6,1), (8,6,1), (7,5,1), (5,9,1), (9,9,2), (11,2,2), (6,4,2), (10,9,2), (8,6,3)
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10 promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Контрольная работа Вариант No5 Выбор варианта: N = 5 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=8 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=1 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=6 Обучающая последовательность и тестовый объект для метода ближайших соседей: 8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
User IT-STUDHELP : 19 июня 2023
1450 руб.
promo
Интеллектуальные технологии информационной безопасности. Контрольная работа. Вариант 22
Контрольная работа по методам классификации Выбор варианта: N = 22 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=3 Классификатор на основе метода ближайших k соседей и определение класса тестового значения Решение: (X,Y)={ (1,7,1), (3,2,1), (6,8,1), (4,7,1), (9,8,1), (4,5,1), (1,2,1), (14,10,2), (8,12,2), (14,12,2), (11,10,2), (13,8,2), (13,6,2)}: тестовый объект x’=(6,7) 1 Построить классификатор на основе алгоритма CART построения дерева прин
User banderas0876 : 14 ноября 2023
250 руб.
Интеллектуальные технологии информационной безопасности. Контрольная работа. Вариант 22
Онлайн Тест по дисциплине: Интеллектуальные технологии информационной безопасности.
Вопрос No1 К основным задачам машинного обучения относятся: Поиск скрытых закономерностей, генерация новых знаний Классификация, кластеризация, регрессия, уменьшение размерности и прогнозирование Обработка специализированных наборов данных, генерация новых наборов данных, сжатие данных Повышение точности прогноза по сравнению с некоторой существующей прогнозирующей или решающей моделью, виртуализация данных, оптимизация Вопрос No2 MSE это Measure Square Evaluating, оценка квадратичной
User IT-STUDHELP : 29 сентября 2023
700 руб.
promo
Вентиль угловой КИКГ.ХХХХХХ.010
КИКГ.ХХХХХХ.010 Вентиль угловой сборочный чертеж КИКГ.ХХХХХХ.010 Вентиль угловой спецификация КИКГ.ХХХХ01.010_Корпус КИКГ.ХХХХ02.010_Шпиндель КИКГ.ХХХХ03.010_Втулка сальника КИКГ.ХХХХ04.010_Маховик КИКГ.ХХХХ05.010_Втулка КИКГ.ХХХХ06.010_Стакан КИКГ.ХХХХ07.010_Фланец КИКГ.ХХХХ08.010_Фланец КИКГ.ХХХХХХ.011_Клапан Вентиль устройство для регулирования в трубопроводе пара, газа, воды или другой жидкости. Вентиль состоит из корпуса 2, в резьбовом отверстии которого установлен шпиндель 3. На нижнем ко
User coolns : 19 марта 2020
600 руб.
Вентиль угловой КИКГ.ХХХХХХ.010 promo
Экзаменационная работа По дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет 5
Экзаменационный Билет No5 Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей. 1. Найти целочисленное решение задачи линейного программирования методом Гомори. 2. Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры i) для оптимальной точки (8;3) задачи нелинейного программирования.
User alexadubinina : 21 ноября 2024
800 руб.
Экзаменационная работа По дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет 5
Значение логистики в деятельности промышленных предприятий
Введение. 3 Глава 1 Общая характеристика логистики. 4 1. 1 Понятие и сущность логистики. 4 1. 2 Предмет изучения логистики и ее цели. 7 1. 3 Задачи и функции логистики. 8 1. 4 Материальный поток. 10 1. 5 Информационный поток. 14 Глава 2 Виды логистики. 19 2.1 Закупочная логистика. 19 2.2 Распределительная логистика. 21 2.2.1 Логистика распределения, ее задачи и функции. 21 2.2.2 Выбор канала сбыта готовой продукции. 22 2.2.3 Определение оптимального размера заказа. 24 2.3 Производственная логист
User alfFRED : 20 октября 2012
20 руб.
Кондуктор перекидной 00-000.06.01.01.00
Кондуктор перекидной 00-000.06.01.01.00 сборочный чертеж + спецификация. Перекидной кондуктор представляет собой приспособление для сверления отверстий через втулки 5 и 6 в двух противоположных фланцах детали, устанавливаемой на базу 2 и закрепленной быстросъемной шайбой 4 и гайкой 15. На корпусе 1 винтами 14 укреплена база 2, на фланец которой устанавливается и выступающей частью ?25 центрируется обрабатываемая деталь. Плита 3 при этом откинута. В базу 2 ввернута шпилька 17 застопоренная низко
User coolns : 19 февраля 2020
350 руб.
Кондуктор перекидной 00-000.06.01.01.00 promo
up Наверх