Лабораторная работа №1,2,3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант 05
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1
«Метод k ближайших соседей»
Вариант: 05
Задание на лабораторную работу 1:
Суть лабораторной работы заключается в написании классификатора на основе метода k ближайших соседей. Данные из файла необходимо разбить на две выборки, обучающую и тестовую, согласно общепринятым правилам разбиения. На основе этих данных необходимо обучить разработанный классификатор. На обучающей выборке следует подобрать необходимые параметры метода для лучшей точности, а на тестовой выборке один раз протестировать метод с найденными оптимальными значениями изменяемых параметров (количеством соседей k/ параметрами q и i/ шириной окна h).
В качестве отчёта требуется представить:
- Вариант работы.
- Работающая программа.
- Таблица с результатами тестирования на этапе подбора
параметров метода, в которой будет видна зависимость точности
предсказания от изменяемого параметра.
- Результат работы на тестовой выборке при найденных
оптимальных параметрах.
Разбиение выборки необходимо выполнять программно, случайным образом, при этом, не нарушая информативности обучающей выборки.
Разбивать рекомендуется по следующему правилу: делим выборку на 3 равных части, 2 части используем в качестве обучающей, одну в качестве тестовой. Кроме того, обучающая выборка должна быть сгенерирована таким образом, чтобы минимизировать разницу между количеством представленных в ней объектов разных классов, т.е.
abs(|{(xi, yi) ∈ X |yi = −1}| − |{(xi, yi) ∈ X
|yi = 1}|) → min.
Входные данные:
К заданию на лабораторную работу прилагаются файлы, в которых представлены наборы данных из ~10^4 объектов. Каждый объект описывается двумя признаками (fj(x) ∈ R) и соответствующим ему классом (y ∈ {0,1}).
Пример чтения данных:
import pandas as pd
df = pd.read_csv(\'data.csv\', sep=\',\')
Варианты:
Выполнение лабораторной работы разбито на несколько пунктов, в каждом из которых есть несколько вариантов, выбор варианта опирается на Nc – последние 2 цифры в пароле.
Первый пункт отвечает за выбор типа классификатора. Вариант выбирается по формуле NВ = (Nc mod 3) + 1:
1. Метод k взвешенных ближайших соседей
2. Метод парзеновского окна с фиксированным h
3. Метод парзеновского окна с относительным размером окна
Для варианта 1 необходимо использовать весовую функцию wi по формуле Nw = (Ncmod 2) + 1. Параметр q подбирается методом скользящего контроля.
1. wi = qi, q ∈ (0,1)
2. wi = (k+1−i/k)q, q ∈ {2,3,4}
В случае 2-го и 3-го вариантов, необходимо использовать функцию ядра K(z) из списка по следующей формуле Nя = ((Nс ∗ 6 + 13) mod 8 mod 3) + 1:
1. Q –квартическое K(x) = (1 − r^2)^2 [r ≤ 1]
2. T – треугольное K(x) = (1 − r)[r ≤ 1]
3. П – прямоугольное K(x) = [r ≤ 1]
Кроме того, к лабораторной работе прилагаются 5 файлов с данными для классификации, файл выбирается по следующей формуле
Nф = ((Nc + 2)mod 5) + 1
________________________________________________
Лабораторная работа No2
“Решающие деревья”
К заданию прилагается файл с данными, содержащим результаты исследований методов обнаружения вторжений. Файл содержит в себе несколько колонок, все они перечислены:
columns = [\'duration\', \'protocol_type\', \'service\', \'flag\', \'src
_bytes\', \'dst_bytes\', \'land\', \'wrong_fragment\',\'urgent\', \'hot\',
\'num_failed_logins\', \'logged_in\', \'num_compromised\', \'root_she ll\', \'su_attempted\',
\'num_root\', \'num_file_creations\', \'num_shells\', \'num
_access_files\', \'num_outbound_cmds\',
\'is_host_login\', \'is_guest_login\', \'count\', \'srv_cou
nt\', \'serror_rate\', \'srv_serror_rate\',
\'rerror_rate\', \'srv_rerror_rate\', \'same_srv_rate\', \'
diff_srv_rate\', \'srv_diff_host_rate\',
\'dst_host_count\', \'dst_host_srv_count\', \'dst_host_sa
me_srv_rate\', \'dst_host_diff_srv_rate\',
\'dst_host_same_src_port_rate\', \'dst_host_srv_diff_ho
st_rate\', \'dst_host_serror_rate\',
\'dst_host_srv_serror_rate\', \'dst_host_rerror_rate\',
\'dst_host_srv_rerror_rate\', \'attack\', \'level\']
Задание:
Классифицировать атаки по типу атак, проверить правильность
классификации.
Считать файл можно следующим образом:
import pandas as pd
df = pd.read_csv(\'KDDTrain+.txt\')
test_df = pd.read_csv(\'KDDTest+.txt\')
columns = ([\'duration\'
,\'protocol_type\'
,\'service\'
,\'flag\'
,\'src_bytes\'
,\'dst_bytes\'
,\'land\'
,\'wrong_fragment\'
,\'urgent\'
,\'hot\'
,\'num_failed_logins\'
,\'logged_in\'
,\'num_compromised\'
,\'root_shell\'
,\'su_attempted\'
,\'num_root\'
,\'num_file_creations\'
,\'num_shells\'
,\'num_access_files\'
,\'num_outbound_cmds\'
,\'is_host_login\'
,\'is_guest_login\'
,\'count\'
,\'srv_count\'
,\'serror_rate\'
,\'srv_serror_rate\'
,\'rerror_rate\'
,\'srv_rerror_rate\'
,\'same_srv_rate\'
,\'diff_srv_rate\'
,\'srv_diff_host_rate\'
,\'dst_host_count\'
,\'dst_host_srv_count\'
,\'dst_host_same_srv_rate\'
,\'dst_host_diff_srv_rate\'
,\'dst_host_same_src_port_rate\'
,\'dst_host_srv_diff_host_rate\'
,\'dst_host_serror_rate\'
,\'dst_host_srv_serror_rate\'
,\'dst_host_rerror_rate\'
,\'dst_host_srv_rerror_rate\'
,\'attack\'
,\'level\'])
df.columns = columns
test_df.columns = columns
В файле информация о типах атак находится в столбце «attack», всего их 5
видов:
attack_labels = [\'Normal\',\'DoS\',\'Probe\',\'U2R\',\'R2L\']
Требуется имеющиеся данные разбить на обучающую и тестовую выборки в
процентном соотношении 70 к 30.
После чего по обучающей выборке необходимо построить решающее дерево,
а также случайный лес.
Разрешается использовать уже реализованные решающие деревья из
известных библиотек (например, scikit-learn для Python).
В качестве отчёта требуется представить:
Работающая программа, определяющая с помощью изучаемых методов
типы атак и процент правильности их определения;
2 таблицы, указанные в приложении, показывающие % точности
предсказания типа атак в зависимости от изменения параметров дерева
решений и леса;
Параметры дерева, на которых достигается наилучшая точность
предсказания;
Параметры леса, на которых достигается наилучшая точность предсказания;
______________________________________________
Лабораторная работа No3
“Регрессия”
Целью данной лабораторной работы является разработка программы, реализующей применение метода логистической регрессии к заданному набору данных.
В набор данных входят 2 файла, в «True» находится информация о правдивых новостных заметках, в «Fake.csv» находится информация о поддельных новостях. Каждый файл состоит из следующих полей:
1. (title) – заголовок статьи;
2. (text) – содержимое статьи;
3. (subject) – тип новости;
4. (date) – дата опубликования статьи.
Реализация регрессии в Scikit-Learn
На практике предлагается использовать проверенную и широко используемую библиотеку Scikit-Learn для реализации регрессии.
Следующая команда импортирует набор данных CSV, используя библиотеку pandas:
dataset = pd.read_csv(\'Weather.csv\')
Чтобы увидеть статистические данные набора данных, можно использовать метод describe():
dataset.describe()
Затем разделяем 80% данных на обучающий набор, а 20% данных - на набор тестов, используя приведенный ниже код.
Переменная test_size - это то место, где мы на самом деле указываем пропорцию тестового набора.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Наконец, после разделения данных на обучающие и тестовые наборы, настало время обучить наш алгоритм. Для этого нужно импортировать класс LinearRegression, создать его экземпляр и вызвать fit() метод вместе с нашими данными обучения.
regressor = LinearRegression()
regressor.fit(X_train, y_train)
Теперь, когда мы обучили наш алгоритм, пришло время сделать некоторые прогнозы. Для этого будем использовать наши тестовые данные и посмотрим,
насколько точно алгоритм предсказывает процентную оценку. Чтобы сделать прогноз на тестовых данных, выполните следующий скрипт:
y_pred = regressor.predict(X_test)
Задание: используя модель логистической регрессии реализовать прогнозирование реалистичности статьи.
1. Необходимо построить модель для каждого из наборов, обучить её и сравнить полученные при помощи модели результаты с известными. Для обучения использовать 70% выборки, для тестирования 30%. Разбивать необходимо случайным образом, а, следовательно, для корректности тестирования качества модели, эксперимент необходимо провести не менее 10 раз и вычислить среднее значение качества регрессии.
2. Работу регрессии необходимо проверить на конкретном примере. При подаче на вход определённого объекта данных (заголовка статьи, текста, типа и даты) программа должна выводить тип статьи «Fake» или «Frue»,
выведенное значение необходимо проверить с тем, что находится в исходных данных.
Особенности работы с данными:
После загрузки данных в память необходимо пометить поддельные новости «0», а подлинные новости «1» для дальнейшей работы.
Для преобразования текста в частотные векторы слова использовать метод TfidfVectorizer().
В качестве отчёта требуется представить:
Работающую программу, в которой отражено использование метода логистической регрессии для предсказания типа статей.
Результаты 10 запусков отразить в таблице, где указать номер запуска и процент правильности предсказания типа статьи. Перед каждым запуском данные можно обработать с помощью метода shuffle().
Среднее значение предсказания типа статьи исходя из 10 запусков
«Метод k ближайших соседей»
Вариант: 05
Задание на лабораторную работу 1:
Суть лабораторной работы заключается в написании классификатора на основе метода k ближайших соседей. Данные из файла необходимо разбить на две выборки, обучающую и тестовую, согласно общепринятым правилам разбиения. На основе этих данных необходимо обучить разработанный классификатор. На обучающей выборке следует подобрать необходимые параметры метода для лучшей точности, а на тестовой выборке один раз протестировать метод с найденными оптимальными значениями изменяемых параметров (количеством соседей k/ параметрами q и i/ шириной окна h).
В качестве отчёта требуется представить:
- Вариант работы.
- Работающая программа.
- Таблица с результатами тестирования на этапе подбора
параметров метода, в которой будет видна зависимость точности
предсказания от изменяемого параметра.
- Результат работы на тестовой выборке при найденных
оптимальных параметрах.
Разбиение выборки необходимо выполнять программно, случайным образом, при этом, не нарушая информативности обучающей выборки.
Разбивать рекомендуется по следующему правилу: делим выборку на 3 равных части, 2 части используем в качестве обучающей, одну в качестве тестовой. Кроме того, обучающая выборка должна быть сгенерирована таким образом, чтобы минимизировать разницу между количеством представленных в ней объектов разных классов, т.е.
abs(|{(xi, yi) ∈ X |yi = −1}| − |{(xi, yi) ∈ X
|yi = 1}|) → min.
Входные данные:
К заданию на лабораторную работу прилагаются файлы, в которых представлены наборы данных из ~10^4 объектов. Каждый объект описывается двумя признаками (fj(x) ∈ R) и соответствующим ему классом (y ∈ {0,1}).
Пример чтения данных:
import pandas as pd
df = pd.read_csv(\'data.csv\', sep=\',\')
Варианты:
Выполнение лабораторной работы разбито на несколько пунктов, в каждом из которых есть несколько вариантов, выбор варианта опирается на Nc – последние 2 цифры в пароле.
Первый пункт отвечает за выбор типа классификатора. Вариант выбирается по формуле NВ = (Nc mod 3) + 1:
1. Метод k взвешенных ближайших соседей
2. Метод парзеновского окна с фиксированным h
3. Метод парзеновского окна с относительным размером окна
Для варианта 1 необходимо использовать весовую функцию wi по формуле Nw = (Ncmod 2) + 1. Параметр q подбирается методом скользящего контроля.
1. wi = qi, q ∈ (0,1)
2. wi = (k+1−i/k)q, q ∈ {2,3,4}
В случае 2-го и 3-го вариантов, необходимо использовать функцию ядра K(z) из списка по следующей формуле Nя = ((Nс ∗ 6 + 13) mod 8 mod 3) + 1:
1. Q –квартическое K(x) = (1 − r^2)^2 [r ≤ 1]
2. T – треугольное K(x) = (1 − r)[r ≤ 1]
3. П – прямоугольное K(x) = [r ≤ 1]
Кроме того, к лабораторной работе прилагаются 5 файлов с данными для классификации, файл выбирается по следующей формуле
Nф = ((Nc + 2)mod 5) + 1
________________________________________________
Лабораторная работа No2
“Решающие деревья”
К заданию прилагается файл с данными, содержащим результаты исследований методов обнаружения вторжений. Файл содержит в себе несколько колонок, все они перечислены:
columns = [\'duration\', \'protocol_type\', \'service\', \'flag\', \'src
_bytes\', \'dst_bytes\', \'land\', \'wrong_fragment\',\'urgent\', \'hot\',
\'num_failed_logins\', \'logged_in\', \'num_compromised\', \'root_she ll\', \'su_attempted\',
\'num_root\', \'num_file_creations\', \'num_shells\', \'num
_access_files\', \'num_outbound_cmds\',
\'is_host_login\', \'is_guest_login\', \'count\', \'srv_cou
nt\', \'serror_rate\', \'srv_serror_rate\',
\'rerror_rate\', \'srv_rerror_rate\', \'same_srv_rate\', \'
diff_srv_rate\', \'srv_diff_host_rate\',
\'dst_host_count\', \'dst_host_srv_count\', \'dst_host_sa
me_srv_rate\', \'dst_host_diff_srv_rate\',
\'dst_host_same_src_port_rate\', \'dst_host_srv_diff_ho
st_rate\', \'dst_host_serror_rate\',
\'dst_host_srv_serror_rate\', \'dst_host_rerror_rate\',
\'dst_host_srv_rerror_rate\', \'attack\', \'level\']
Задание:
Классифицировать атаки по типу атак, проверить правильность
классификации.
Считать файл можно следующим образом:
import pandas as pd
df = pd.read_csv(\'KDDTrain+.txt\')
test_df = pd.read_csv(\'KDDTest+.txt\')
columns = ([\'duration\'
,\'protocol_type\'
,\'service\'
,\'flag\'
,\'src_bytes\'
,\'dst_bytes\'
,\'land\'
,\'wrong_fragment\'
,\'urgent\'
,\'hot\'
,\'num_failed_logins\'
,\'logged_in\'
,\'num_compromised\'
,\'root_shell\'
,\'su_attempted\'
,\'num_root\'
,\'num_file_creations\'
,\'num_shells\'
,\'num_access_files\'
,\'num_outbound_cmds\'
,\'is_host_login\'
,\'is_guest_login\'
,\'count\'
,\'srv_count\'
,\'serror_rate\'
,\'srv_serror_rate\'
,\'rerror_rate\'
,\'srv_rerror_rate\'
,\'same_srv_rate\'
,\'diff_srv_rate\'
,\'srv_diff_host_rate\'
,\'dst_host_count\'
,\'dst_host_srv_count\'
,\'dst_host_same_srv_rate\'
,\'dst_host_diff_srv_rate\'
,\'dst_host_same_src_port_rate\'
,\'dst_host_srv_diff_host_rate\'
,\'dst_host_serror_rate\'
,\'dst_host_srv_serror_rate\'
,\'dst_host_rerror_rate\'
,\'dst_host_srv_rerror_rate\'
,\'attack\'
,\'level\'])
df.columns = columns
test_df.columns = columns
В файле информация о типах атак находится в столбце «attack», всего их 5
видов:
attack_labels = [\'Normal\',\'DoS\',\'Probe\',\'U2R\',\'R2L\']
Требуется имеющиеся данные разбить на обучающую и тестовую выборки в
процентном соотношении 70 к 30.
После чего по обучающей выборке необходимо построить решающее дерево,
а также случайный лес.
Разрешается использовать уже реализованные решающие деревья из
известных библиотек (например, scikit-learn для Python).
В качестве отчёта требуется представить:
Работающая программа, определяющая с помощью изучаемых методов
типы атак и процент правильности их определения;
2 таблицы, указанные в приложении, показывающие % точности
предсказания типа атак в зависимости от изменения параметров дерева
решений и леса;
Параметры дерева, на которых достигается наилучшая точность
предсказания;
Параметры леса, на которых достигается наилучшая точность предсказания;
______________________________________________
Лабораторная работа No3
“Регрессия”
Целью данной лабораторной работы является разработка программы, реализующей применение метода логистической регрессии к заданному набору данных.
В набор данных входят 2 файла, в «True» находится информация о правдивых новостных заметках, в «Fake.csv» находится информация о поддельных новостях. Каждый файл состоит из следующих полей:
1. (title) – заголовок статьи;
2. (text) – содержимое статьи;
3. (subject) – тип новости;
4. (date) – дата опубликования статьи.
Реализация регрессии в Scikit-Learn
На практике предлагается использовать проверенную и широко используемую библиотеку Scikit-Learn для реализации регрессии.
Следующая команда импортирует набор данных CSV, используя библиотеку pandas:
dataset = pd.read_csv(\'Weather.csv\')
Чтобы увидеть статистические данные набора данных, можно использовать метод describe():
dataset.describe()
Затем разделяем 80% данных на обучающий набор, а 20% данных - на набор тестов, используя приведенный ниже код.
Переменная test_size - это то место, где мы на самом деле указываем пропорцию тестового набора.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Наконец, после разделения данных на обучающие и тестовые наборы, настало время обучить наш алгоритм. Для этого нужно импортировать класс LinearRegression, создать его экземпляр и вызвать fit() метод вместе с нашими данными обучения.
regressor = LinearRegression()
regressor.fit(X_train, y_train)
Теперь, когда мы обучили наш алгоритм, пришло время сделать некоторые прогнозы. Для этого будем использовать наши тестовые данные и посмотрим,
насколько точно алгоритм предсказывает процентную оценку. Чтобы сделать прогноз на тестовых данных, выполните следующий скрипт:
y_pred = regressor.predict(X_test)
Задание: используя модель логистической регрессии реализовать прогнозирование реалистичности статьи.
1. Необходимо построить модель для каждого из наборов, обучить её и сравнить полученные при помощи модели результаты с известными. Для обучения использовать 70% выборки, для тестирования 30%. Разбивать необходимо случайным образом, а, следовательно, для корректности тестирования качества модели, эксперимент необходимо провести не менее 10 раз и вычислить среднее значение качества регрессии.
2. Работу регрессии необходимо проверить на конкретном примере. При подаче на вход определённого объекта данных (заголовка статьи, текста, типа и даты) программа должна выводить тип статьи «Fake» или «Frue»,
выведенное значение необходимо проверить с тем, что находится в исходных данных.
Особенности работы с данными:
После загрузки данных в память необходимо пометить поддельные новости «0», а подлинные новости «1» для дальнейшей работы.
Для преобразования текста в частотные векторы слова использовать метод TfidfVectorizer().
В качестве отчёта требуется представить:
Работающую программу, в которой отражено использование метода логистической регрессии для предсказания типа статей.
Результаты 10 запусков отразить в таблице, где указать номер запуска и процент правильности предсказания типа статьи. Перед каждым запуском данные можно обработать с помощью метода shuffle().
Среднее значение предсказания типа статьи исходя из 10 запусков
Дополнительная информация
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 1
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,
Ракитский Антон Андреевич
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 2
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,
Ракитский Антон Андреевич
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 3
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,
Ракитский Антон Андреевич
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 1
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,
Ракитский Антон Андреевич
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 2
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,
Ракитский Антон Андреевич
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 3
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,
Ракитский Антон Андреевич
Похожие материалы
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
IT-STUDHELP
: 7 октября 2023
Лабораторная работа 1. «Метод k ближайших соседей»
Вариант 10
Выбор варианта:
NC = 10
Тип классификатора:
NВ = (NC mod 3) + 1 = 2
3. Метод парзеновского окна с фиксированным h.
Вариант функции ядра для метода празеновского окна определяется по формуле:
NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 2
2. T — треугольное K(x) = (1 − r)[r ≤ 1]
Вариант файла с данными для классификации определяется по формуле:
NФ = ((NC + 2) mod 5) + 1 = 3
Файл: data3.csv.
1 Результаты тестирования
Надёжность предсказа
900 руб.
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
IT-STUDHELP
: 7 октября 2023
Вариант №19
Лабораторные работы 1
Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3.
2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро.
=============================================
Лабораторная работа 2. «Решающие деревья»
1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса
Таблица 1. Результаты N запусков Решающего дерева
Максимальная глубина дерева
(max_depth) Максимальное количеств
900 руб.
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
IT-STUDHELP
: 19 июня 2023
Лабораторная работа 1. «Метод k ближайших соседей»
Вариант 05
Выбор варианта:
NC = 5
Тип классификатора:
NВ = (NC mod 3) + 1 = 3
3. Метод парзеновского окна с относительным размером окна.
Вариант функции ядра для метода празеновского окна определяется по формуле:
NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1
1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1]
Вариант файла с данными для классификации определяется по формуле:
NФ = ((NC + 2) mod 5) + 1 = 3
Файл: data3.csv.
1 Результаты тестирования
Над
1000 руб.
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант 05
SibGUTI2
: 25 июля 2024
Контрольная работа по методам классификации
Контрольная работа состоит из нескольких заданий. От варианта студента (2 последние цифры пароля) зависят входные данные, для которых будут решаться задания, а также некоторые особенности выполнения заданий.
Предоставляются наборы данных, в зависимости от варианта, для этих данных необходимо:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения (методические указания и пример приведены ниже); От вариант
400 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
IT-STUDHELP
: 7 октября 2023
Вариант No10
Контрольная работа
Выбор варианта:
N = 10
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=2
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=2
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=4
Обучающая последовательность и тестовый объект для метода ближайших соседей:
2) (X,Y)={(2,7,1), (6,6,1), (8,6,1), (7,5,1), (5,9,1), (9,9,2), (11,2,2), (6,4,2), (10,9,2), (8,6,3)
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
IT-STUDHELP
: 7 октября 2023
Вариант №19
Контрольная работа по методам классификации
Выбор варианта: N = 19
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=11.
Обучающая последовательность и тестовый объект:
11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновск
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
IT-STUDHELP
: 19 июня 2023
Контрольная работа
Вариант No5
Выбор варианта:
N = 5
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=8
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=6
Обучающая последовательность и тестовый объект для метода ближайших соседей:
8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
1450 руб.
Лабораторная работа №1 по дисциплине: Интеллектуальные технологии информационной безопасности. «Метод k ближайших соседей». Вариант 05
SibGUTI2
: 25 июля 2024
Лабораторная работа No1
«Метод k ближайших соседей»
Вариант: 05
Задание на лабораторную работу 1:
Суть лабораторной работы заключается в написании классификатора на основе метода k ближайших соседей. Данные из файла необходимо разбить на две выборки, обучающую и тестовую, согласно общепринятым правилам разбиения. На основе этих данных необходимо обучить разработанный классификатор. На обучающей выборке следует подобрать необходимые параметры метода для лучшей точности, а на тестовой выборке од
350 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.