Лабораторная работа №1,2,3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант 05

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Лаба 1.docx
material.view.file_icon Лаба 2.docx
material.view.file_icon Лаба 3.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Лабораторная работа No1
«Метод k ближайших соседей»

Вариант: 05

Задание на лабораторную работу 1:
Суть лабораторной работы заключается в написании классификатора на основе метода k ближайших соседей. Данные из файла необходимо разбить на две выборки, обучающую и тестовую, согласно общепринятым правилам разбиения. На основе этих данных необходимо обучить разработанный классификатор. На обучающей выборке следует подобрать необходимые параметры метода для лучшей точности, а на тестовой выборке один раз протестировать метод с найденными оптимальными значениями изменяемых параметров (количеством соседей k/ параметрами q и i/ шириной окна h).

В качестве отчёта требуется представить:
- Вариант работы.
- Работающая программа.
- Таблица с результатами тестирования на этапе подбора
параметров метода, в которой будет видна зависимость точности
предсказания от изменяемого параметра.
- Результат работы на тестовой выборке при найденных
оптимальных параметрах.
Разбиение выборки необходимо выполнять программно, случайным образом, при этом, не нарушая информативности обучающей выборки.
Разбивать рекомендуется по следующему правилу: делим выборку на 3 равных части, 2 части используем в качестве обучающей, одну в качестве тестовой. Кроме того, обучающая выборка должна быть сгенерирована таким образом, чтобы минимизировать разницу между количеством представленных в ней объектов разных классов, т.е.
abs(|{(xi, yi) ∈ X |yi = −1}| − |{(xi, yi) ∈ X
|yi = 1}|) → min.

Входные данные:
К заданию на лабораторную работу прилагаются файлы, в которых представлены наборы данных из ~10^4 объектов. Каждый объект описывается двумя признаками (fj(x) ∈ R) и соответствующим ему классом (y ∈ {0,1}).

Пример чтения данных:
import pandas as pd
df = pd.read_csv(\'data.csv\', sep=\',\')

Варианты:
Выполнение лабораторной работы разбито на несколько пунктов, в каждом из которых есть несколько вариантов, выбор варианта опирается на Nc – последние 2 цифры в пароле.
Первый пункт отвечает за выбор типа классификатора. Вариант выбирается по формуле NВ = (Nc mod 3) + 1:
1. Метод k взвешенных ближайших соседей
2. Метод парзеновского окна с фиксированным h
3. Метод парзеновского окна с относительным размером окна
Для варианта 1 необходимо использовать весовую функцию wi по формуле Nw = (Ncmod 2) + 1. Параметр q подбирается методом скользящего контроля.
1. wi = qi, q ∈ (0,1)
2. wi = (k+1−i/k)q, q ∈ {2,3,4}
В случае 2-го и 3-го вариантов, необходимо использовать функцию ядра K(z) из списка по следующей формуле Nя = ((Nс ∗ 6 + 13) mod 8 mod 3) + 1:
1. Q –квартическое K(x) = (1 − r^2)^2 [r ≤ 1]
2. T – треугольное K(x) = (1 − r)[r ≤ 1]
3. П – прямоугольное K(x) = [r ≤ 1]
Кроме того, к лабораторной работе прилагаются 5 файлов с данными для классификации, файл выбирается по следующей формуле
Nф = ((Nc + 2)mod 5) + 1

________________________________________________

Лабораторная работа No2

“Решающие деревья”

К заданию прилагается файл с данными, содержащим результаты исследований методов обнаружения вторжений. Файл содержит в себе несколько колонок, все они перечислены:

columns = [\'duration\', \'protocol_type\', \'service\', \'flag\', \'src
_bytes\', \'dst_bytes\', \'land\', \'wrong_fragment\',\'urgent\', \'hot\',
\'num_failed_logins\', \'logged_in\', \'num_compromised\', \'root_she ll\', \'su_attempted\',
\'num_root\', \'num_file_creations\', \'num_shells\', \'num
_access_files\', \'num_outbound_cmds\',
\'is_host_login\', \'is_guest_login\', \'count\', \'srv_cou
nt\', \'serror_rate\', \'srv_serror_rate\',
\'rerror_rate\', \'srv_rerror_rate\', \'same_srv_rate\', \'
diff_srv_rate\', \'srv_diff_host_rate\',
\'dst_host_count\', \'dst_host_srv_count\', \'dst_host_sa
me_srv_rate\', \'dst_host_diff_srv_rate\',
\'dst_host_same_src_port_rate\', \'dst_host_srv_diff_ho
st_rate\', \'dst_host_serror_rate\',
\'dst_host_srv_serror_rate\', \'dst_host_rerror_rate\',
\'dst_host_srv_rerror_rate\', \'attack\', \'level\']

Задание:
Классифицировать атаки по типу атак, проверить правильность
классификации.
Считать файл можно следующим образом:
import pandas as pd
df = pd.read_csv(\'KDDTrain+.txt\')
test_df = pd.read_csv(\'KDDTest+.txt\')
columns = ([\'duration\'
,\'protocol_type\'
,\'service\'
,\'flag\'
,\'src_bytes\'
,\'dst_bytes\'
,\'land\'
,\'wrong_fragment\'
,\'urgent\'
,\'hot\'
,\'num_failed_logins\'
,\'logged_in\'
,\'num_compromised\'
,\'root_shell\'
,\'su_attempted\'
,\'num_root\'
,\'num_file_creations\'
,\'num_shells\'
,\'num_access_files\'
,\'num_outbound_cmds\'
,\'is_host_login\'
,\'is_guest_login\'
,\'count\'
,\'srv_count\'
,\'serror_rate\'
,\'srv_serror_rate\'
,\'rerror_rate\'
,\'srv_rerror_rate\'
,\'same_srv_rate\'
,\'diff_srv_rate\'
,\'srv_diff_host_rate\'
,\'dst_host_count\'
,\'dst_host_srv_count\'
,\'dst_host_same_srv_rate\'
,\'dst_host_diff_srv_rate\'
,\'dst_host_same_src_port_rate\'
,\'dst_host_srv_diff_host_rate\'
,\'dst_host_serror_rate\'
,\'dst_host_srv_serror_rate\'
,\'dst_host_rerror_rate\'
,\'dst_host_srv_rerror_rate\'
,\'attack\'
,\'level\'])
df.columns = columns
test_df.columns = columns
В файле информация о типах атак находится в столбце «attack», всего их 5
видов:
attack_labels = [\'Normal\',\'DoS\',\'Probe\',\'U2R\',\'R2L\']
Требуется имеющиеся данные разбить на обучающую и тестовую выборки в
процентном соотношении 70 к 30.
После чего по обучающей выборке необходимо построить решающее дерево,
а также случайный лес.
Разрешается использовать уже реализованные решающие деревья из
известных библиотек (например, scikit-learn для Python).
В качестве отчёта требуется представить:
Работающая программа, определяющая с помощью изучаемых методов
типы атак и процент правильности их определения;
2 таблицы, указанные в приложении, показывающие % точности
предсказания типа атак в зависимости от изменения параметров дерева
решений и леса;
Параметры дерева, на которых достигается наилучшая точность
предсказания;
Параметры леса, на которых достигается наилучшая точность предсказания;

______________________________________________

Лабораторная работа No3

“Регрессия”

Целью данной лабораторной работы является разработка программы, реализующей применение метода логистической регрессии к заданному набору данных.

В набор данных входят 2 файла, в «True» находится информация о правдивых новостных заметках, в «Fake.csv» находится информация о поддельных новостях. Каждый файл состоит из следующих полей:
1. (title) – заголовок статьи;
2. (text) – содержимое статьи;
3. (subject) – тип новости;
4. (date) – дата опубликования статьи.

Реализация регрессии в Scikit-Learn
На практике предлагается использовать проверенную и широко используемую библиотеку Scikit-Learn для реализации регрессии.
Следующая команда импортирует набор данных CSV, используя библиотеку pandas:
dataset = pd.read_csv(\'Weather.csv\')
Чтобы увидеть статистические данные набора данных, можно использовать метод describe():
dataset.describe()
Затем разделяем 80% данных на обучающий набор, а 20% данных - на набор тестов, используя приведенный ниже код.
Переменная test_size - это то место, где мы на самом деле указываем пропорцию тестового набора.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Наконец, после разделения данных на обучающие и тестовые наборы, настало время обучить наш алгоритм. Для этого нужно импортировать класс LinearRegression, создать его экземпляр и вызвать fit() метод вместе с нашими данными обучения.
regressor = LinearRegression()
regressor.fit(X_train, y_train)
Теперь, когда мы обучили наш алгоритм, пришло время сделать некоторые прогнозы. Для этого будем использовать наши тестовые данные и посмотрим,
насколько точно алгоритм предсказывает процентную оценку. Чтобы сделать прогноз на тестовых данных, выполните следующий скрипт:
y_pred = regressor.predict(X_test)

Задание: используя модель логистической регрессии реализовать прогнозирование реалистичности статьи.
1. Необходимо построить модель для каждого из наборов, обучить её и сравнить полученные при помощи модели результаты с известными. Для обучения использовать 70% выборки, для тестирования 30%. Разбивать необходимо случайным образом, а, следовательно, для корректности тестирования качества модели, эксперимент необходимо провести не менее 10 раз и вычислить среднее значение качества регрессии.
2. Работу регрессии необходимо проверить на конкретном примере. При подаче на вход определённого объекта данных (заголовка статьи, текста, типа и даты) программа должна выводить тип статьи «Fake» или «Frue»,
выведенное значение необходимо проверить с тем, что находится в исходных данных.
Особенности работы с данными:
После загрузки данных в память необходимо пометить поддельные новости «0», а подлинные новости «1» для дальнейшей работы.
Для преобразования текста в частотные векторы слова использовать метод TfidfVectorizer().
В качестве отчёта требуется представить:
Работающую программу, в которой отражено использование метода логистической регрессии для предсказания типа статей.
Результаты 10 запусков отразить в таблице, где указать номер запуска и процент правильности предсказания типа статьи. Перед каждым запуском данные можно обработать с помощью метода shuffle().
Среднее значение предсказания типа статьи исходя из 10 запусков

Дополнительная информация

Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 1
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,

Ракитский Антон Андреевич



Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 2
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,

Ракитский Антон Андреевич



Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Интеллектуальные технологии информационной безопасности
Вид работы: Лабораторная работа 3
Оценка: Зачет
Дата оценки: 27.06.2024
Рецензия: Уважаемый ...............................................,

Ракитский Антон Андреевич
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Лабораторная работа 1. «Метод k ближайших соседей» Вариант 10 Выбор варианта: NC = 10 Тип классификатора: NВ = (NC mod 3) + 1 = 2 3. Метод парзеновского окна с фиксированным h. Вариант функции ядра для метода празеновского окна определяется по формуле: NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 2 2. T — треугольное K(x) = (1 − r)[r ≤ 1] Вариант файла с данными для классификации определяется по формуле: NФ = ((NC + 2) mod 5) + 1 = 3 Файл: data3.csv. 1 Результаты тестирования Надёжность предсказа
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Лабораторные работы 1 Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3. 2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро. ============================================= Лабораторная работа 2. «Решающие деревья» 1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса Таблица 1. Результаты N запусков Решающего дерева Максимальная глубина дерева (max_depth) Максимальное количеств
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Лабораторная работа 1. «Метод k ближайших соседей» Вариант 05 Выбор варианта: NC = 5 Тип классификатора: NВ = (NC mod 3) + 1 = 3 3. Метод парзеновского окна с относительным размером окна. Вариант функции ядра для метода празеновского окна определяется по формуле: NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1 1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1] Вариант файла с данными для классификации определяется по формуле: NФ = ((NC + 2) mod 5) + 1 = 3 Файл: data3.csv. 1 Результаты тестирования Над
User IT-STUDHELP : 19 июня 2023
1000 руб.
promo
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант 05
Контрольная работа по методам классификации Контрольная работа состоит из нескольких заданий. От варианта студента (2 последние цифры пароля) зависят входные данные, для которых будут решаться задания, а также некоторые особенности выполнения заданий. Предоставляются наборы данных, в зависимости от варианта, для этих данных необходимо: 1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения (методические указания и пример приведены ниже); От вариант
User SibGUTI2 : 25 июля 2024
400 руб.
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант 05
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Контрольная работа по методам классификации Выбор варианта: N = 19 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=11. Обучающая последовательность и тестовый объект: 11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10). Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=3. Весовая функция: 3) — метод парзеновск
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19 promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Вариант No10 Контрольная работа Выбор варианта: N = 10 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=2 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=2 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=4 Обучающая последовательность и тестовый объект для метода ближайших соседей: 2) (X,Y)={(2,7,1), (6,6,1), (8,6,1), (7,5,1), (5,9,1), (9,9,2), (11,2,2), (6,4,2), (10,9,2), (8,6,3)
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10 promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Контрольная работа Вариант No5 Выбор варианта: N = 5 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=8 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=1 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=6 Обучающая последовательность и тестовый объект для метода ближайших соседей: 8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
User IT-STUDHELP : 19 июня 2023
1450 руб.
promo
Лабораторная работа №1 по дисциплине: Интеллектуальные технологии информационной безопасности. «Метод k ближайших соседей». Вариант 05
Лабораторная работа No1 «Метод k ближайших соседей» Вариант: 05 Задание на лабораторную работу 1: Суть лабораторной работы заключается в написании классификатора на основе метода k ближайших соседей. Данные из файла необходимо разбить на две выборки, обучающую и тестовую, согласно общепринятым правилам разбиения. На основе этих данных необходимо обучить разработанный классификатор. На обучающей выборке следует подобрать необходимые параметры метода для лучшей точности, а на тестовой выборке од
User SibGUTI2 : 25 июля 2024
350 руб.
Лабораторная работа №1 по дисциплине: Интеллектуальные технологии информационной безопасности. «Метод k ближайших соседей». Вариант 05
Контрольная работа по дисциплине: Цифровая обработка сигналов. Вариант №06.
Задача 1. Прохождение дискретного непериодического сигнала через нерекурсивную дискретную цепь. На вход дискретной цепи подается непериодический сигнал . 1.1 Построить график дискретного сигнала. 1.2 Рассчитать спектр ДС с шагом . Построить амплитудный спектр. 1.3 Построить дискретную цепь. Записать ее передаточную функцию, определить импульсную характеристику цепи. 1.4 Определить сигнал на выходе цепи по формуле линейной свертки Построить график выходного сигнала. 1.5 Рассчитать спектр
User teacher-sib : 30 августа 2023
1000 руб.
promo
Дифференциация обучения как условие развития одаренных детей
Введение……………………………………………………………………………………………3 1.Взаимоотношения умственно одаренных дошкольников в группе.…5 2. Обучение одаренных……………………………………………………………………..13 2.1. Общие особенности одаренных детей……………………………………………………..13 2.2. Ускорение обучения……………………………………………………………………………13 2.3. Обогащение обучения…………………………………………………………………………15 3. Учитель для одаренных……………………………………………………….19 3.1. Подготовка учителя…………………………………………………………………………….19 3.2. Личностные особенности и поведенческие черты для одар
User Elfa254 : 23 марта 2013
Человеко-машинное взаимодействие. Лабораторная работа №1. Вариант №4.
2.1. Необходимо провести первые 4 этапа проблемно-центрированного дизайна (до чернового описания включительно) программного продукта, помогающего пользователю в решении описанной ниже проблемы (10 вариантов). Последняя цифра пароля Задание 4 Спортивная поездка (горные лыжи, серфинг и т.п.) 2.2. Необходимо также привести свои соображения по возможному составу команды разработчиков и сформулировать основные требования практичности
User zhekaersh : 16 февраля 2015
70 руб.
Проект оказания услуги по ремонту кузовов легковых а/м
Содержание Введение…………………………………………………………………………… 11 Раздел 1. Технико-экономическое обоснование……………………………. 14 1.1 Обоснование мощности СТОА…………………………………………………. 18 1.2 Выбор перечня услуг (работ)……………………………………………………. 19 1.3 Определение потребности в технологическом оборудовании………………... 21 Раздел 2. Маркетинговое исследование………………………………………. 23 2.1 Обзор рынка услуг…………………………………………….………………….. 23 2.2 Ёмкость рынка…………...……………………………………………………….. 25 2.3 Анализ выбранной услуги………………………………………………………..
User Рики-Тики-Та : 6 декабря 2015
825 руб.
up Наверх