Страницу Назад
Поискать другие аналоги этой работы

3000

Инфокоммуникационные технологии и системы связи - ОТВЕТЫ К ГОСУДАРСТВЕННОМУ ЭКЗАМЕНУ 2024 ГОД СДАЧИ!!!

ID: 246720
Дата закачки: 02 Сентября 2024
Продавец: Ирина (Напишите, если есть вопросы)
    Посмотреть другие работы этого продавца

Тип работы: Пособие к Госэкзамену
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
ОТВЕТЫ К ГОСУДАРСТВЕННОМУ ЭКЗАМЕНУ ПО НАПРАВЛЕНИЮ: «инфокоммуникационные технологии и системы связи» (11.03.02)
профиль: системы радиосвязи, мобильной связи и радиодоступа

к К БОЛЬШИНСТВУ ЗАДАЧ НЕСКОЛЬКО ВАРИАНТОВ РЕШЕНИЯ!!!!

Задачи для государственного экзамена
Дисциплина «Радиоприемные устройства для телерадиовещения»

№ 1
Определить полосу пропускания на края диапазона входного контура с частотами 150–415кГц, если эквивалентная добротность контура QЭ=15, неравномерность в полосе пропускания =0,8.

№2
Как изменится избирательность одноконтурной входной цепи по соседнему каналу при изменении частоты настройки от 0,5 МГц до 1,5 МГц, если на минимальной частоте эта избирательность 20 дБ. Эквивалентное затухание остаётся постоянным, а ∆fСК =9 кГц.

№3
Определить коэффициенты включения m и n в одноконтурной входной цепи, обеспечивающие согласование настроенной антенны со входом приемника при требуемой полосе пропускания П=37,5 МГц, если f0=150 МГц, RА=100 Ом , СК= 20 пФ, dК=0,05, Ом.

№4
Рассчитать избирательность по зеркальному каналу контура входной цепи, настроенной на частоту МГц и имеющей полосу пропускания МГц на уровне =0,6. Частота гетеродина приёмника равна МГц.

№5
Определить коэффициент перекрытия диапазона входной цепи, если избирательность по соседнему каналу на границах диапазона 2,28 дБ и 8,3 дБ, а эквивалентное затухание при перестройке не изменяется (∆fСК = 9 кГц).

 
№6
Определить собственное резонансное сопротивление контура одноконтурного усилителя, если коэффициенты включения контура m=1 и n=0,2, крутизна характеристики транзистора S=100 мА/В, конструктивная добротность контура , резонансный коэффициент усиления =5, резонансная частота =50 МГц, полоса пропускания на уровне 0,707 равна П=10 МГц.

№7
Определить эквивалентное затухание контура одноконтурного усилителя, работающего на частоте МГц, если коэффициенты включения контура m=1 и n=0,1, крутизна характеристики транзистора S=100 мА/В, емкость контура =2000 пФ, резонансный коэффициент усиления =32.

№8
Определить полосу пропускания одноконтурного усилителя на уровне 0,707, если крутизна характеристики транзистора S=100 мА/В, резонансный коэффициент усиления =16, коэффициенты включения m=0,5 и n=0,2, емкость контура =1000 пФ.

№9
Определить индуктивность контура одноконтурного усилителя, если крутизна характеристики транзистора S = 100 мА/В, резонансный коэффициент усиления , эквивалентная добротность контура , ёмкость контура пФ, коэффициенты включения m=0,5 и n=0,2.

№10
Определить резонансную частоту одноконтурного усилителя, если крутизна характеристики транзистора S = 100 мА/В, резонансный коэффициент усиления , эквивалентная добротность контура , индуктивность контура мкГн, коэффициенты включения m=1 и n=0,1.

№11
Вычислите минимальное значение g21МИН мгновенной крутизны транзистора ПЧ, если зависимость этой крутизны от напряжения гетеродина определяется равенством g21=a+2bUГ, в котором a = 100мА/В, а крутизна преобразования G21ПР=45 мА/В.

№12
Определите резонансный коэффициент усиления триодного преобразователя частоты, если эквивалентное резонансное сопротивление RЭ= 10 кОм, коэффициенты включения контура m=n=0,5 и мгновенная крутизна транзистора из-за действия напряжения гетеродина меняется по гармоническому закону в пределах от g21МИН =20 мА/В до g21МАКС =100 мА/В.

№13
Найти амплитуду составляющей выходного тока транзистора с промежуточной частотой в транзисторном преобразователе частоты при короткозамкнутой нагрузке, если амплитуда входного сигнала UС=80 мкВ, амплитуда напряжения гетеродина UГ=0,03 В и вольтамперная характеристика транзистора описывается выражением i2=i20+a∆U+b∆U2,в котором b=0,3 А/В2.


№14
Определите амплитуду сигнала на входе транзисторного преобразователя частоты, если известно, что амплитуда тока транзистора с промежуточной частотой при короткозамкнутой нагрузке IПЧ=4 мкА, а крутизна характеристики транзистора меняется под действием напряжения гетеродина в пределах

№15
Определите коэффициент передачи преобразователя частоты, если крутизна преобразователя G21ПР=12 мА/В, собственная добротность контура QК=100, выходная проводимость преобразовательного прибора 1 мСм, входная проводимость транзистора следующего каскада 7 мСм, m=1, n=0,5, СК=1000 пФ, f0=2 МГц.

№16
Определите напряжение на выходе последовательного диодного детектора, если постоянная составляющая тока диода I0=0,2мА, угол отсечки тока диода θ=30°, внутреннее сопротивление диода с идеальной характеристикой Ri =100Ом

№17
Какой должна быть емкость нагрузки диодного детектора, чтобы искажения из-за инерционности нагрузки отсутствовали для коэффициента амплитудной модуляции m≤0,8, если при емкости С΄Н=200пФ искажения отсутствуют для m΄≤0,3?

№18
Определите сопротивление RУ, разделительной цепи СР, RУ на выходе диодного детектора, при котором искажения из-за этой цепи и из-за нелинейности начального участка характеристики детектирования возникают при одно и том же коэффициенте амплитудной модуляции сигнала, если амплитуда сигнала UВХ=3В, протяженность нелинейного участка характеристики UНЕЛ=0,2В, сопротивление нагрузки детектора RН=15кОм.

№19
Определите постоянную времени τ=RНСН нагрузки диодного детектора, при которой искажения из-за инерционности нагрузки и из-за нелинейности начального участка характеристики детектирования возникают при одном и том же коэффициенте амплитудной модуляции сигнала, если частота модуляции F=12кГц, Um ВХ=1,5В и протяженность нелинейного участка характеристики Uнел=0,3В.

№20
Определите сопротивление нагрузки RН диодного детектора (рисунок 4.8), при которой искажения из-за нелинейности начального участка характеристики детектирования и из-за разделительной цепи RУСР наступают при одном и том же коэффициенте амплитудной модуляции входного сигнала, если амплитуда сигнала UВХ=1В, протяженность нелинейного участка характеристики UНЕЛ=0,1В и сопротивление RУ=90кОм.

№21
Рассчитайте сопротивление резистора R1 в цепи питания усилителя (рис. ниже), если ток базы iБ0=0,15 мА, напряжение источника питания E=10 В, постоянное напряжение на резисторе R2 равно UR2=2 В и R2=2 кОм.


№22
1 Определите ток покоя базы транзистора в схеме (рис. ниже), если напряжение источника питания E=8 В, постоянное напряжение на резисторе R1=5 кОм равно UR1=5 В и R2=4 кОм.


№23
Определите напряжение Е источника питания усилителя (рис. ниже), если ток базы iБ0=0,1 мА, напряжение база-земля UБЗ=2 В, R1=3 кОм, R2=1 кОм


№24
Рассчитайте сопротивление резистора R2 в цепи питания усилителя (рис. ниже), если ток покоя эмиттера iЭ0=2 мА, напряжение эмиттер-база UЭБ0=0,2 В, ток через резистор R2 равен iR2=2 мА, RЭ=1,5 кОм, EК=9 В.



№25
Определите напряжение UСИ в схеме усилителя радиочастоты (рис. ниже), если напряжение источника питания Е=12 В, сопротивление в цепи истока R2=910 Ом, сопротивление в цепи питания R3=410 Ом, а падение напряжения на нем составляет 1,2 В.




Вопросы для государственного экзамена
по дисциплине
«Радиопередающие устройства систем радиосвязи и радиодоступа»

1. Определить мощность потерь на аноде лампы в критическом режиме (Pa), если угол отсечки θ=90˚ (αо=0,318; α1=0,5), постоянный ток Io =10А, напряжение питания Ea =10 кВ, сопротивление нагрузки Ra =600 Ом.

2. Определите электронный к.п.д. генератора в критическом режиме (η), если угол отсечки θ=90˚ (αо=0,318; α1=0,5), постоянный ток Io =10А, напряжение питания Ea =10 кВ, сопротивление нагрузки Ra =600 Ом.

3. Определите к.п.д. колебательного контура с параметрами: C = 3180 пФ;
L = 8мкГн; собственная добротность катушки индуктивности Qxx =200; вносимое сопротивление потерь rвн = 4,75 Ом.

4. Определите эквивалентное сопротивление нагрузочного контура в анодной цепи генератора по его параметрам: C = 3180 пФ; L = 8мкГн; собственная добротность катушки индуктивности Qxx =200; вносимое сопротивление потерь r вн = 4,75 Ом.

5. Определите эквивалентное сопротивление нагрузочного контура в анодной цепи генератора, если электронный к.п.д. генератора в недонапряженном режиме ηа = 0,72, постоянный ток Iао = 10A, напряжение питания Еа = 10 кВ, θ = 90º ( αo =0,318, α1 =0,5).

6. Генератор работает на волне λ = 15 м. Мощность генератора Р1 =9 кВт. Сопротивление анодной нагрузки Rа = 4,5 кОм, емкость в контуре С = 80 пФ, собственная добротность катушки Qхх = 200. Определите к.п.д. колебательной системы и мощность в антенне.

7. Собственная добротность катушек трехконтурной колебательной системы генератора Qxx = 200. Нагруженные добротности контуров соответственно равны: Q1 = 50; Q2 = 40; Q3 = 20. Определите общий к.п.д. колебательной системы.

8. Собственная добротность катушек трехконтурной колебательной системы генератора Qxx = 200. Нагруженные добротности контуров соответственно равны: Q1 = 50; Q2 = 40; Q3 = 20. Определите реактивную мощность в каждом контуре, если мощность генератора 10 кВт.

9. Собственные добротности катушек двухконтурной колебательной системы генератора равны: Qxx1= 100, Qxx2= 200. К.п.д. колебательной системы
η = 0,81, а нагруженная добротность первого контура Q1 = 10. Определите нагруженную добротность второго контура.

10. Определить мощность потерь на аноде лампы в режиме молчания (PaТ) при сеточной модуляции, если максимальная мощность генератора P1 макс=10 кВт, максимальный к.п.д. η макс =0.75, коэффициент модуляции m =1.

11. Определить мощность потерь на аноде лампы в режиме молчания (PaТ) при сеточной модуляции, если мощность генератора в режиме молчания
P1Т =80 кВт, потребляемая мощность в максимальном режиме
Poмакс =400 кВт, коэффициент модуляции m =0,8.

12. Определить мощность потерь на аноде лампы в режиме молчания (PaТ) при сеточной модуляции, если мощность потерь на аноде в максимальном режиме Paмакс =2 кВт, к.п.д. в режиме несущей ηт =0,38, коэффициент модуляции
m =0,8.

13. Определить мощность потерь на аноде лампы в режиме молчания (Paт) при анодной модуляции, если максимальная мощность генератора
P1 макс=100 кВт, максимальный к.п.д. ηмакс =0.8, коэффициент модуляции
m =0.8.

14. Определить мощность потерь на аноде лампы в максимальном режиме (Paмакс) при анодной модуляции, если потребляемая мощность в режиме несущей Poт =9кВт, максимальный к.п.д. ηмакс =0,75, коэффициент модуляции m =0,7.

15. Определить мощность генератора в максимальном режиме (P1 макс) при анодной модуляции, если потребляемая мощность Poмакс =15 кВт, мощность потерь на аноде в режиме несущей Paт =1,5 кВт, коэффициент модуляции
m = 0,8.

16. Определить мощность, потребляемую генератором в режиме несущей (PoТ) при анодной модуляции, если мощность потерь в максимальном режиме Paмакс = 2кВт, к.п.д. в режиме несущей ηТ =0,7, коэффициент модуляции
m = 0,8.

17. Определить мощность потребляемую от источника питания в максимальном режиме (Poмакс) при сеточной модуляции, если потери на аноде в режиме несущей Paт = 5 кВт, максимальный к.п.д. ηмакс =0,75, коэффициент модуляции m = 1.

18. Какую мощность потребляет от модулятора анодная цепь генератора, модулируемого на анод, при колебательной мощности в режиме несущей
P1т = 100 кВт, электронном к.п.д. генератора η = 0,64 и коэффициенте модуляции m=0,8.

19. Определите мощность генератора в режиме несущей, если он модулируется на анод и потребляет от модулятора 100 кВт звуковой мощности при к.п.д.
η = 81% и коэффициенте модуляции m =0,9.

20. Определите мощность потерь на управляющей сетке лампы генератора, если мощность возбуждения P1с = 2 кВт, постоянный ток сетки Iсо = 1,8 А, напряжение смещения Ес = -700 В.

21. Определите мощность возбуждения генератора (P1c), если потери на сетке составляют Pc = 0,5 кВт, напряжение смещения Ес = -500 В, постоянный ток сетки Iсо = 1А.

22. Определите напряжение возбуждения генератора (Uc), если потери на сетке составляют Рс = 0,5 кВт, напряжение смещения Ес = -500 В, постоянный ток сетки Iсо = 1А, угол отсечки сеточного тока θ =90˚(αo=0,318; α1=0,5; К1с =0,75; Кос=0,67)

23. Две лампы, включенные параллельно, работают на общую нагрузку, отдавая мощность Р1 = 100кВт, при электронном к.п.д. η =0,8 Какую мощность будет потреблять генератор и как изменится его к.п.д. при отключении одной лампы, если проницаемость лампы D→ 0.

24. Две лампы, включенные параллельно, работают на общую нагрузку, отдавая мощность Р1 = 200кВт. При этом общая мощность потерь на анодах ламп составляет Ра =50 кВт. Определите мощность потерь на аноде работающей лампы, если вторая лампа отключена и D→ 0.
25. Две лампы, включенные параллельно, работают на общую нагрузку, отдавая мощность Р1 = 12.5кВт. Амплитуда анодного напряжения Ua = 5кВ. Определите кажущиеся сопротивления нагрузки для каждой лампы, если анодный ток одной ламы на 10% больше, чем у другой.

26. Две лампы, включенные параллельно, работают на общую нагрузку, отдавая мощность Р1 = 200 кВт. Токи ламп отличаются на 10 %. Какую мощность отдает в нагрузку каждая лампа?

27. Определите величину приращения частоты автогенератора, если фазовый сдвиг в цепи обратной связи изменился на + 11,4˚. Добротность контура автогенератора Q =400; частота f = 8МГц.

28. Определите добротность колебательной системы автогенератора, работающего на частоте f = 10 МГц, если изменение фазового сдвига в цепи обратной связи на + 5,7˚ вызвало изменение частоты автогенератора на 1 Гц.

29. Кварцевый резонатор имеет следующие параметры: емкость кварцедержателя С0 = 10 пФ; сопротивление потерь rq = 20 Ом; частота последовательного резонанса f1 = 1 МГц; частота параллельного резонанса
f2 =1,0001 МГц. Определите добротность резонатора на частоте f1.



Вопросы к госэкзамену
по дисциплине «Сети цифрового телерадиовещания»

1. Принципы цифрового кодирования телевизионного сигнала
2. Преобразование звуковых сигналов в цифровую форму
3. Задача сжатия информации и пути ее решения
4. Использование ДКП в стандарте кодирования MPEG-2
5. Сжатие звукоданных, реализуемое в стандарте кодирования MPEG-2
6. Формирование транспортного потока данных в устройствах кодирования MPEG-2
7. Способы модуляции, применяемые при передаче сигналов цифрового телевидения по радиоканалу
8. Концепция стандарта DVB-T
9. Обработка данных и сигналов в системе DVB-T
10. Формирование данных и структура сигналов в системе DVB-T
11. Основные положения нового стандарта цифрового наземного телевидения DVB-T2
12. Стандарт цифрового телевидения для мобильных терминалов DVB-H
13. Принципы функционирования спутниковых сетей телевизионного вещания
14. Стандарты цифровых систем кабельного телевидения
15. Архитектура мультисервисных систем IP-типа
16. Особенности организации телевизионного вещания в сети Интернет
17. Принципы построения телевизионных систем с ограниченным доступом
18. Общие сведения о структуре эфирного телевизионного вещания
19. Применение одночастотных сетей цифрового телевидения
20. Конструкция цифрового телевизионного приемника
21. Система управления цифровым телевизионным приемником
22. Принцип построения абонентских цифровых приставок-декодеров


Вопросы к государственному экзамену
(дисциплина Беспроводные технологии передачи данных)

1. Модель цифровой системы передачи данных.
2. Пропускная способность канала. Теорема Шеннона-Хартли. Предел Шеннона.
3. Аналого-цифровое преобразование. Теорема Котельникова. Шум квантования.
4. Кодирование источника. Методы кодирования PCM, DPCM, ADPCM, DM, LPC.
5. Помехоустойчивое кодирование. Линейные блочные коды.
6. Помехоустойчивое кодирование. Циклические блочные коды.
7. Свёрточное кодирование. Декодер Витерби.
8. Помехоустойчивое кодирование. Каскадные и турбо-коды.
9. Спектрально эффективная модуляция в системах беспроводной связи. Частотная манипуляция.
10. Манипуляция с минимальным сдвигом MSK и GMSK.
11. Спектрально эффективная модуляция в системах беспроводной связи. Фазовая манипуляция.
12. Квадратурная амплитудная модуляция, формирование сигнала, преимущества и недостатки.
13. Методы многостанционного доступа. Частотное, временное и кодовое разделение канала.
14. Множественный доступ с кодовым разделением. Методы расширения спектра сигнала. Виды кодирующих последовательностей и их свойства.
15. Методы многостанционного доступа с ортогональным и неортогональным разделением частот.
16. Замирания. Виды замираний. Запас на замирания.
17. Замирания и методы борьбы с ними.
18. Модели распространения радиоволн. Модели распространения в свободном пространстве, с учётом реальных условий распространения и двухлучевая.
19. Эмпирические модели РРВ: Ли, Окамура-Хата, COST-231.
20. Модели распространения радиоволн внутри помещений.




+ ОТВЕТЫ К "Радиоприемные устройства" (Шушнов М.Г.)

1)Назначение и виды РПрУ РД И РС. Структура и принцип действия устройств приема и обработки радиосигналов. Показатели РПрУ РД И РС.

2)Структурные схемы РПрУ РД И РС. РПрУ РД И РС с обработкой на промежуточной частоте. РПрУ РД И РС с преобразованием на нулевую частоту. РПрУ РД И РС с цифровой обработкой сигнала на ПЧ и на нулевой ПЧ.

3)Входные цепи РПрУ РД И РС. Назначение и характеристики входных цепей. Эквиваленты приемных антенн. Входные цепи приемников СВЧ.

4)Малошумящие транзисторные усилители СВЧ. СВЧ с использованием современной элементной базы.

5)Фильтры сосредоточенной избирательности для трактов промежуточной частоты. Микроминиатюризация УПЧ.

6)Преобразователи частоты (ПЧ) и параметрические усилители. Назначение, структура и основные параметры ПЧ. Побочные каналы преобразования.

7)Выбор наименьшей и наибольшей величин промежуточной частоты для супергетеродинного приемника, исходя из избирательностей по зеркальному и соседнему каналам приема. Двойное преобразования частоты.

8)Транзисторные преобразователи частоты. Транзисторные преобразователи СВЧ.

9)Типы фазовых детекторов. Схемы фазовых детекторов. Демодуляторы дискретных видов модуляции (BPSK, QPSK, QAM).

10)Регулировки в РПРУ РД И РС. Назначение и виды регулировок. Частотная автоподстройка частоты (ЧАПЧ). Фазовая автоподстройка частоты. Функциональная схема системы ФАПЧ.

11)Синтезаторы частоты. Применение ФАПЧ в синтезаторах частоты. Особенности построения двух и трехдиапазонных синтезаторов частоты.

Задачи:
№1
Определить полосу пропускания преселектора на уровне 0.9, если контур настроен на частоту 80МГц и обеспечивает избирательность по зеркальному каналу 20дБ, а промежуточная частота fПР=10МГц.
№2
Чему равно максимальное значение крутизны транзисторного преобразователя частоты, если под действием напряжения гетеродина крутизна меняется по гармоническому закону и ее минимальное значение SМИН=10мА/В. Резонансный коэффициент усиления преобразователя равен К0=10, эквивалентное резонансное сопротивление RЭ=2кОм, коэффициенты включения контура m=1, n=0.5
№3
Определить амплитуду сигнала на входе транзисторного преобразователя частоты, если известно, что амплитуда тока транзистора с промежуточной частотой при короткозамкнутой нагрузке Yпч=4мкА, а крутизна характеристики транзистора меняется под действием напряжения гетеродина в пределах от Sмин=0.01А/В до Sмакс=0.11А/В.
№4
Определить шумовую температуру приемника, структурная схема которого приведена на рисунке

 Кр1=10 Кр2=0.2

 g1=1 g2=0.8  g3=0.5
 Ш1=3 Ш2=6 Ш3=10
№5
Определить полосу пропускания на уровне N=0.707 преселектора, состоящего из одноконтурной входной цепи и одноконтурного УРЧ. Контуры входной цепи и УРЧ одинаковы и каждый имеет полосу пропускания П =80кГц на уровне =0.707.
№6
Рассчитайте коэффициенты включения контура УРЧ m (коэффициент включения в коллекторную цепь) и n (коэффициент включения в базовую цепь следующего каскада), обеспечивающие максимально реализуемый устойчивый коэффициент передачи напряжения одноконтурного УРЧ при заданной полосе пропускания =2МГц. Параметры транзистора и элементов схемы следующие
• крутизна =32 мСм;
• проводимость обратной связи = 0.4 мСм;
• выходная проводимость транзистора УРЧ g22 =1.3 мСм;
• эквивалентная проводимость входного контура при резонансе gэ1=1.0 мСм;
• емкость контура УРЧ Ск=15 пФ;
• проводимость нагрузки контура УРЧ gн=13 мСм;
• коэффициент подключения УРЧ ко входному контуру n1=1.0;
• коэффициент запаса устойчивости Ку=0.9;
• коэффициент расширения полосы пропускания ,
где Пк 0.7- собственная полоса пропускания контура УПЧ на уровне 0.7; П0.7 – полоса пропускания УРЧ на уровне 0.7.

№7
Найдите и исправьте ошибки в схеме УПЧ (усилитель промежуточной частоты).

Определите полосу пропускания УПЧ на уровне на частоте f0=500кГц при следующих данных: m=0.5; n=0.2; Lк=200мкГ; Qк=100; Rвых VT1 =10кОм; Rвхсл =2 кОм.
№8
Определить амплитуду напряжения гетеродина, при которой коэффициент усиления транзисторного преобразователя частоты равен К0=12, если эквивалентное резонансное сопротивление контура Rэ=8кОм, коэффициенты включения контура m=1, n=0.3. Зависимость крутизны характеристики транзистора от напряжения гетеродина имеет вид: s=S0+aUг где S0 – значение крутизны при Uг=0, а=0.5А/В.




Комментарии: ЭКЗАМЕН СДАН НА ОТЛИЧНО В 2024 ГОДУ!!!!!

Размер файла: 6,8 Мбайт
Фаил: Упакованные файлы (.rar)
-------------------
Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные!
Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот.
-------------------

   Скачать

   Добавить в корзину


        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, точных предложений нет. Рекомендуем воспользоваться поиском по базе.

Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Инфокоммуникационные технологии / Инфокоммуникационные технологии и системы связи - ОТВЕТЫ К ГОСУДАРСТВЕННОМУ ЭКЗАМЕНУ 2024 ГОД СДАЧИ!!!
Вход в аккаунт:
Войти

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
UnionPay СБР Ю-Money qiwi Payeer Крипто-валюты Крипто-валюты


И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках


Сайт помощи студентам, без посредников!