Разработка системы управления многосвязных систем автоматического регулирования исполнительного уровня
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Неуклонный рост материальных и духовных потребностей общества стимулирует развитие всех видов науки, техники и промышленных технологий. В результате этого происходит модернизация старых и создание новых технических средств и систем различного целевого назначения. От устаревших их отличают улучшенные потребительские и эксплуатационно-технические характеристики (производительность, точность, сложность функций и качество их исполнения, энергопотребление, надежность, конструктивная сложность, число элементов, интенсивность и скорость протекания процессов, возможность работы в пограничных и критических режимах). Сферы их применения разнообразны: энергетика, транспорт, промышленное производство, авиационная, ракетно-космическая, военная, медицинская, научная и испытательная техника и др.
Сложные технические объекты не могут самостоятельно и нормально функционировать (выполнять алгоритм функционирования) без принудительных (управляющих) воздействий со стороны специально организованного комплекса средств, образующих управляющую подсистему. Для реализации основных ее функций, таких как: а) сбор осведомительной информации о состоянии управляемого объекта и внешней среды; б) преобразование информации (принятие решения); в) формирование управляющих воздействий (исполнение решения) применяются специальные технические средства (устройства). При этом суть и цель автоматизации управления состоит в возможно более полном освобождении человека от выполнения названных выше функций управляющей подсистемы.
Переход от локальной автоматизации к комплексной приводит к необходимости одновременного изменения нескольких управляемых переменных. Усложнение функций, возложенных на технические объекты, повышение требований к качеству их выполнения; необходимость учета взаимодействий локальных процессов; повышение порядка и сложности математических моделей и др. существенно усложняют задачу управления. При этом сложные технические объекты должны рассматриваться не только как многомерные, но и как многосвязные. Примерами могут служить летательные аппараты, их силовые и энергетические установки; исполнительные подсистемы роботов и т.п. В них многосвязность проявляется в наличии перекрестных связей, за счет которых управляющее воздействие, поданное на любой из входов, приводит к изменению несколько выходов.
Сложные технические объекты не могут самостоятельно и нормально функционировать (выполнять алгоритм функционирования) без принудительных (управляющих) воздействий со стороны специально организованного комплекса средств, образующих управляющую подсистему. Для реализации основных ее функций, таких как: а) сбор осведомительной информации о состоянии управляемого объекта и внешней среды; б) преобразование информации (принятие решения); в) формирование управляющих воздействий (исполнение решения) применяются специальные технические средства (устройства). При этом суть и цель автоматизации управления состоит в возможно более полном освобождении человека от выполнения названных выше функций управляющей подсистемы.
Переход от локальной автоматизации к комплексной приводит к необходимости одновременного изменения нескольких управляемых переменных. Усложнение функций, возложенных на технические объекты, повышение требований к качеству их выполнения; необходимость учета взаимодействий локальных процессов; повышение порядка и сложности математических моделей и др. существенно усложняют задачу управления. При этом сложные технические объекты должны рассматриваться не только как многомерные, но и как многосвязные. Примерами могут служить летательные аппараты, их силовые и энергетические установки; исполнительные подсистемы роботов и т.п. В них многосвязность проявляется в наличии перекрестных связей, за счет которых управляющее воздействие, поданное на любой из входов, приводит к изменению несколько выходов.
Другие работы
Теплотехника МГУПП 2015 Задача 3.4 Вариант 52
Z24
: 8 января 2026
Определить часовой расход натурального и условного топлива на выработку в котлоагрегате типа ДЕ-10-14-ГМ влажного насыщенного пара с избыточным давлением ризб и степенью сухости х, если:
паропроизводительность котла D;
процент продувки Пр;
температура питательной воды tпв;
низшая теплота сгорания топлива Qрн;
коэффициент полезного действия (брутто) при номинальной производительности ηбрном.
Исходные данные приведены в таблицах 15 и 16.
Примечания:
Располагаемую теплоту принять равн
250 руб.
Тепломассообмен КГУ Курган 2020 Задача 2 Вариант 51
Z24
: 12 января 2026
Определить потери теплоты в единицу времени с 1 м длины горизонтально расположенной цилиндрической трубы, охлаждаемой свободным потоком воздуха, если температура стенки трубы tc, температура воздуха в помещении tв, а диаметр трубы d. Степень черноты трубы εс = 0,9.
200 руб.
Резервуары для сокращения потерь нефти–Плакат-Картинка-Фотография-Чертеж-Оборудование транспорта и хранения нефти и газа-Курсовая работа-Дипломная работа-Формат Microsoft PowerPoint
lesha.nakonechnyy.92@mail.ru
: 13 ноября 2017
Резервуары для сокращения потерь нефти–Плакат-Картинка-Фотография-Чертеж-Оборудование транспорта и хранения нефти и газа-Курсовая работа-Дипломная работа-Формат Microsoft PowerPoint
276 руб.
Типы финансовой устойчивости предприятия
OstVER
: 21 декабря 2012
Введение. 3
1. Факторы, влияющие на финансовую устойчивость. 4
2. Расчет степени финансовой устойчивости в зависимости от степени обеспеченности запасов и затрат различными видами источников. 6
3. Определение типа финансовой устойчивости. 10
4. Мероприятия по повышению финансовой устойчивости предприятия. 12
Заключение. 13
Список литературы.. 14
Введение
Чтобы ответить на вопросы: насколько организация независима с финансовой точки зрения, растет или снижается уровень этой независимост
5 руб.