Теория информации. Контрольная работа. 4-й вариант

Состав работы

material.view.file_icon
material.view.file_icon на сайт Контрольная работа Теория информации вариан 04.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Цель занятия. Изучение практических приложений основных результатов теории информации для сравнительной оценки информационных характеристик дискретных и непрерывных источников сообщений и каналов связи
1. Определить энтропию и избыточность двоичного источника с независимым выбором элементов, если задана вероятность первого сообщения P(x1). P(x2)=1-P(x1).
Для разных вариантов P(x1)=1/(1+N), где N –номер варианта.
Определить энтропию и избыточность источника с независимым выбором элементов (букв), вероятности выбора которых приведены в таблице вариантов.
Таблица вариантов к задаче 2.
NoNo вар. P(x1) P(x2) P(x3) P(x4) P(x5) P(x6) P(x7) P(x8)
1-4 0,3 0,2 0,2 0,1 0,05 0,05 0,05 0,05
Закодировать сообщение источника предыдущей задачи для передачи информации по каналу связи:
o равномерным двоичным кодом;
o оптимальным неравномерным двоичным кодом.
Сравните среднее число элементов кода, приходящегося на одну букву, для обоих способов кодирования и сделайте обобщающие выводы.
4.В системе связи используется двоичный источник с зависимыми элементами (буквами) x1, x2, для которых заданы вероятности переходов.
Требуется:
1. Изобразить на чертеже диаграмму состояний и переходов источника.
2. Вычислить вероятности P(x1) и P(x2).
3. Определить энтропию и избыточность источника с найденными вероятностями P(x1) и P(x2) в предположении отсутствия корреляционных связей.
4. Определить энтропию и избыточность источника с учётом корреляционных связей.
5. Сравните результаты вычислений по пунктам 3 и 4 сделайте вывод о влиянии корреляции на энтропию и избыточности источника.
Для разных вариантов P(x1|x2)=1/(1+0,1N), P(x2|x1)=(N+4)/40, где N – номер варианта.
5.Закодировать сообщения источника предыдущей задачи сообщений по каналу связи:
o равномерным двоичным кодом;
o оптимальным кодом с учётом корреляционных связей, укрупняя алфавит, путём объединения букв в кодовые слова по две буквы.
Сравнить среднее число элементов кода, приходящееся на одну букву, для этих двух случаев.
6.Решить задачу 5, укрупнив алфавит источника путём объединения букв в кодовые слова по три буквы.
7. Вычислить пропускную способность двоичного канала связи, если информация передаётся со скоростью
V=1200 Бод (для вариантов 1-10);
а вероятность искажения элементарной посылки равна p=0,1/N, где N – номер варианта.
Определить также производительность данного источника.
8. Определить энтропию и производительность источника непрерывных сообщений, если плотность вероятности сигнала описывается равномерным законом распределения, а сигнал ограничен в объёме от -10 до +N милливольт, где N – номер варианта.
Эффективная ширина спектра Δf=1000+10NГц.
Сигнал ограничен в объеме от -10 до +4 мВ
9. Определить энтропию источника непрерывных сообщений с гауссовским законом распределения напряжений, если математическое ожидание равно 10N вольт, а дисперсия σ2 = 0.01N Вт, где N – номер варианта.
10. Определить, какую мощность должен иметь сигнал с гауссовским законом распределения, если известна полоса пропускная канала связи
Δfэфф=1000+10N Гц
и спектральная плотность шума
N0=10+N мкВт/Гц,
где N – номер варианта задачи.
11. Рассчитать и построить зависимость пропускной способности непрерывного канал связи от эффективной полосы пропускания канала при мощности сигнала
Pc=10+N мВт,
где N – номер варианта задачи.
Спектральная плотность гауссовского шума в канале связи
N0=1+N мкВт/Гц.

Дополнительная информация

Работа сдана в 2013 году. Вариант 04. СибГУТИ
Контрольная работа по теории информации. 3-й вариант
теория информации 3 вариант 1 Доказать, что если x и y - независимые случайные величины, то M{xy}= M{x}∙ M{y} 2 Найти последовательность на входе кодера: арифметическое кодирование использовано для кодирования последовательности длины 5 на выходе двоичного постоянного источника с вероятностью единицы 0,4. Кодовое слово на выходе арифметического кодера имеет вид: 11010. 3. Доказать неравенство I(X;Y)≤log|Y|. ... 6. Алфавит состоит из букв A, B, C, D. Определить количество информации, приходящ
User nell : 6 октября 2017
200 руб.
Контрольная работа по дисциплине «Теория информации » 3-й вариант
1. Определить энтропию и избыточность двоичного источника с независимым выбором элементов, если задана вероятность первого сообщения P(x1). P(x2)=1-P(x1). Для разных вариантов P(x1)=1/(1+N), где N –номер варианта. 2. Определить энтропию и избыточность источника с независимым выбором элементов (букв), вероятности выбора которых приведены в таблице вариантов. 3. Закодировать сообщение источника предыдущей задачи для передачи информации по каналу связи: o равномерным двоичным кодом; o оптимальным
User vereney : 27 марта 2012
50 руб.
Теория информации: контрольная работа
Контрольная работа по теории информации 1. Вычислить энтропию Шеннона для символов ФИО. 2. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. 3. Построить код Фано для набора букв ФИО. Подсчитать среднюю длину кодового слова построенного кода. 4. Построить код Шеннона для набора букв ФИО. Подсчитать среднюю длину кодового слова построенного кода. 5. Построить код Г
User Леший : 8 октября 2022
500 руб.
Контрольная работа по Теории информации
1. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. 2. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. 3. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать средню
User nik200511 : 8 апреля 2015
62 руб.
Контрольная работа. Теория информации
1. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. 2. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. 3. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю
User nik200511 : 30 июня 2014
52 руб.
Контрольная работа. Теория информации
Теория информации. Контрольная работа
Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину ко
User Efimenko250793 : 4 февраля 2014
100 руб.
Теория информации. Контрольная работа
Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину ко
User Efimenko250793 : 4 февраля 2014
100 руб.
Теория информации. Контрольная работа.
1. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. 2. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода. 3. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать средню
User nik200511 : 7 сентября 2013
51 руб.
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх