Страницу Назад
Поискать другие аналоги этой работы
250 Лабараторные работы №№ 1,2,3,4,5. Вычислительная математика. Вариант № 0ID: 96688Дата закачки: 15 Апреля 2013 Продавец: Despite (Напишите, если есть вопросы) Посмотреть другие работы этого продавца Тип работы: Работа Лабораторная Форматы файлов: Microsoft Word Сдано в учебном заведении: СибГУТИ Описание: Лабораторная работа №1. Интерполяция: Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая Лабораторная работа №2.Решение систем линейных уравнений: Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,¼ ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. Лабораторная работа №3.Решение нелинейных уравнений: Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля. Лабораторная работа №4. Численное дифференцирование: Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью. Составить программу, которая Лабораторная работа №5. Одномерная оптимизация: Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,¼ ), при этом, Комментарии: Уважаемый слушатель, дистанционного обучения, Оценена Ваша работа по предмету: Вычислительная математика Вид работы: Лабораторная работа Оценка:Зачет Дата оценки: 2013 Рецензия:Уважаемый замечаний нет. Размер файла: 226,2 Кбайт Фаил: ![]() ------------------- Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные! Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку. Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот. -------------------
Скачано: 17 Коментариев: 0 |
||||
Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них. Опять не то? Мы можем помочь сделать!
К сожалению, точных предложений нет. Рекомендуем воспользоваться поиском по базе. |
||||
Не можешь найти то что нужно? Мы можем помочь сделать! От 350 руб. за реферат, низкие цены. Спеши, предложение ограничено ! |
Вход в аккаунт:
Страницу Назад
Cодержание / Вычислительная математика / Лабараторные работы №№ 1,2,3,4,5. Вычислительная математика. Вариант № 0