Лабараторные работы №№ 1,2,3,4,5. Вычислительная математика. Вариант № 0
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1. Интерполяция: Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
Лабораторная работа No2.Решение систем линейных уравнений: Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Лабораторная работа No3.Решение нелинейных уравнений: Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Лабораторная работа No4. Численное дифференцирование: Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью. Составить программу, которая
Лабораторная работа No5. Одномерная оптимизация: Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом,
Лабораторная работа No2.Решение систем линейных уравнений: Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Лабораторная работа No3.Решение нелинейных уравнений: Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Лабораторная работа No4. Численное дифференцирование: Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью. Составить программу, которая
Лабораторная работа No5. Одномерная оптимизация: Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом,
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа
Оценка:Зачет
Дата оценки: 2013
Рецензия:Уважаемый
замечаний нет.
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа
Оценка:Зачет
Дата оценки: 2013
Рецензия:Уважаемый
замечаний нет.
Похожие материалы
Вычислительная математика. Вариант 0.
bananchik
: 31 мая 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (
235 руб.
Вычислительная математика. Курсовая работа. Вариант 0.
LowCost
: 26 мая 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам
180 руб.
Вычислительная математика. Лабораторная работа №№1,2,3. Вариант №0.
holm4enko87
: 10 января 2025
Лабораторная работа No1. Линейная интерполяция.
Задание к работе:
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0
250 руб.
Вычислительная математика. Лабораторная работа №№1,2,3. Вариант №0.
LowCost
: 26 мая 2020
Лабораторная работа No1. Линейная интерполяция.
Задание к работе:
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до
290 руб.
Вычислительная математика. Лабораторная работа № 2. Вариант № 0.
nik200511
: 23 января 2020
Лабораторная работа No 2. Приближенное решение систем линейных уравнений
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью д
108 руб.
Вычислительная математика. Курсовая работа, 2019. Вариант 0.
nik200511
: 23 января 2020
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методо
194 руб.
Вычислительная математика. Лабораторная работа №3. Вариант 0.
nik200511
: 6 июня 2019
Лабораторная работа №3. Численное дифференцирование
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шаг
108 руб.
Вычислительная математика. Лабораторная работа №2. Вариант №0.
nik200511
: 6 июня 2019
Лабораторная работа No2. Приближенное решение систем линейных уравнений
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до
108 руб.
Другие работы
Живые существа взаимодействующие с внешней средой и влияние на ее изменения
alfFRED
: 3 сентября 2013
Hа основе наблюдений природных явлений представление о том, что живые существа взаимодействует с внешней средой и влияет на ее изменение, возникло давно. В начале 17 века зачатки представлений о биосфере мы встречаем в трудах голландских ученых Б. Ваpениуса (1629- 1695)
и Х. Гюйгенса, а также у знаменитого французского журналиста Ж. Бюффона (1707- 1788). Спустя время французский журналист Ж. Кювье (1769- 1832) заметил, что живые организмы могут существовать только путем обмена веществ с внешней
5 руб.
Прижим гидравлический
vermux1
: 2 ноября 2017
Гидравлический прижим предназначен для закрепления обрабатываемых деталей на станках.
Прижим работает от гидроцилиндра, который крепится к корпусу прихвата поз. 1 двумя полукольцами поз. 6, входящими в наружные канавки детали поз. 5, полукольца крепятся винтами поз. 9. Прихват фиксируется двумя шпонками, входящими в нижний паз корпуса поз. 1 и паз станка, и крепится четырьмя пазовыми болтами.
Гидроцилиндр прижима — двустороннего действия. Поршень под давлением жидкости, поступающей через резьбов
170 руб.
Эффективность использования ресурсов и затрат - Контрольная работа по дисциплине: Экономическая теория (часть 1). Вариант №2
IT-STUDHELP
: 16 января 2024
Вариант №2
Тема: Эффективность использования ресурсов и затрат
=============================================
Содержание работы:
Эффективность использования ресурсов и затрат
ВВЕДЕНИЕ
1. Понятие и виды ресурсов и факторов производства
2. Понятие и виды производственных затрат
3. Эффективность использования ресурсов и затрат. Система показателей эффективности
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
=============================================
400 руб.
150 руб.