К вопросу классифицирования прогнозно-поисковых задач по степени геологической корректности их постановки
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Обращаясь к проблеме повышения эффективности прогнозно-поискового блока компьютерных технологий решения геологических задач, целесообразно остановиться на вопросе соответствия задаваемых для обучения эталонных объектов прогноза масштабу и стадии проводимых поисковых работ. Постановка данного вопроса обусловлена тем, что анализ многочисленной литературы по прогнозированию месторождений полезных ископаемых с применением математических методов и ЭВМ показывает, что в подавляющем большинстве случаев прогнозные алгоритмы, предлагаемые для распознавания рудных объектов, ориентированы на аппроксимацию эталонных (целевых) объектов прогноза единичными элементарными ячейками исследуемой территории.
Рассматривая поисковые прогнозно-геологические исследования с чисто математической точки зрения, такое представление эталонных объектов не вызывает возражений, особенно при достаточно большом их числе. Однако взгляд с позиций общей методологии поиска месторождений полезных ископаемых, которая предусматривает разбиение геолого-поискового процесса на ряд стадий с соответствующими каждой стадии масштабом и целевым назначением работ, позволяет утверждать, что аппроксимация эталонных объектов прогноза единичными элементарными территориальными ячейками не является в достаточной степени геологически корректной.
Поясним сказанное примером. Пусть при проведении работ ГДП-200 поставлена задача выявления площадей, в структурно-геологическом отношении являющихся аналогами известных рудных полей, вмещающих промышленные месторождения определенного вида полезного ископаемого. Если теперь в качестве эталонных объектов взять только те элементарные ячейки территории, которые непосредственно локализуют рудные тела (месторождения), то фактически, с одной стороны, задачу поиска объектов одного иерархического уровня мы латентно заменим задачей поиска объектов другого, причем более низкого уровня, а с другой стороны – нарушим стадийность работ, соответствующую принятой иерархии рудных единиц (рудный элемент – рудный минерал – рудное тело – рудное месторождение – рудное поле – рудный район – рудная провинция). Чтобы избавиться от геологической некорректности и не входить в противоречие с итерационностью геолого-поискового процесса, необходимо эталонные объекты прогноза задавать в рудотаксономических границах, соответствующих масштабу проводимых работ. Границы при этом должны быть определены в результате некоторой однозначной процедуры, а не являться произвольными, то есть не зависящими от пространственного распределения свойств геологической среды. В этом случае совокупность элементарных ячеек территории, попадающих в контур эталонного объекта прогноза, соответствующего геологическому заданию, включается в обработку в виде связного множества элементов, которое воспринимается прогнозирующей системой (компьютером) как единое целое. Спонтанно может возникнуть вопрос: почему, не взирая на геологическую некорректность задания эталонных объектов прогноза, приводящую к нарушению стадийности геолого-поисковых работ, прогнозные алгоритмы и соответствующие им автоматизированные системы прогнозирования, ориентированные на аппроксимацию целевых объектов поиска единичными элементарными ячейками исследуемых территорий, получили широкое распространение в практической деятельности?
Рассматривая поисковые прогнозно-геологические исследования с чисто математической точки зрения, такое представление эталонных объектов не вызывает возражений, особенно при достаточно большом их числе. Однако взгляд с позиций общей методологии поиска месторождений полезных ископаемых, которая предусматривает разбиение геолого-поискового процесса на ряд стадий с соответствующими каждой стадии масштабом и целевым назначением работ, позволяет утверждать, что аппроксимация эталонных объектов прогноза единичными элементарными территориальными ячейками не является в достаточной степени геологически корректной.
Поясним сказанное примером. Пусть при проведении работ ГДП-200 поставлена задача выявления площадей, в структурно-геологическом отношении являющихся аналогами известных рудных полей, вмещающих промышленные месторождения определенного вида полезного ископаемого. Если теперь в качестве эталонных объектов взять только те элементарные ячейки территории, которые непосредственно локализуют рудные тела (месторождения), то фактически, с одной стороны, задачу поиска объектов одного иерархического уровня мы латентно заменим задачей поиска объектов другого, причем более низкого уровня, а с другой стороны – нарушим стадийность работ, соответствующую принятой иерархии рудных единиц (рудный элемент – рудный минерал – рудное тело – рудное месторождение – рудное поле – рудный район – рудная провинция). Чтобы избавиться от геологической некорректности и не входить в противоречие с итерационностью геолого-поискового процесса, необходимо эталонные объекты прогноза задавать в рудотаксономических границах, соответствующих масштабу проводимых работ. Границы при этом должны быть определены в результате некоторой однозначной процедуры, а не являться произвольными, то есть не зависящими от пространственного распределения свойств геологической среды. В этом случае совокупность элементарных ячеек территории, попадающих в контур эталонного объекта прогноза, соответствующего геологическому заданию, включается в обработку в виде связного множества элементов, которое воспринимается прогнозирующей системой (компьютером) как единое целое. Спонтанно может возникнуть вопрос: почему, не взирая на геологическую некорректность задания эталонных объектов прогноза, приводящую к нарушению стадийности геолого-поисковых работ, прогнозные алгоритмы и соответствующие им автоматизированные системы прогнозирования, ориентированные на аппроксимацию целевых объектов поиска единичными элементарными ячейками исследуемых территорий, получили широкое распространение в практической деятельности?
Другие работы
Планирование труда и заработной платы
Qiwir
: 26 июня 2013
ВВЕДЕНИЕ - 3 -
ГЛАВА 1. ПЛАНИРОВАНИЕ ТРУДА. 5
1.1. Кадры – наиболее подвижная часть производительных сил. 5
1.2. Производительность труда 6
1.3. Планирование повышения производительности труда. 7
1.4. Планирование численности работающих в цехе, на участке. 8
ГЛАВА 2. ЗАРАБОТНАЯ ПЛАТА КАК ОСНОВНОЙ МОТИВ ПРОИЗВОДИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ. 11
2.1. Основы планирования заработной платы 11
2.2. Факторы, влияющие на выбор формы и системы оплаты труда. 13
2.3. Оплата труда руководителей. 14
2.4. Планировани
10 руб.
Проектирование призматического резца
Рики-Тики-Та
: 23 сентября 2011
1. ПРОЕКТИРОВАНИЕ И РАСЧЕТ ФАСОННОГО ПРИЗМАТИЧЕСКОГО РЕЗЦА
1.1 Исходные данные:
1.2 Рассчитаем высотные размеры профиля в узловых точках на детали по формулам
1.3 Выбираем габаритные и конструктивные размеры резца по таблице
1.4 Рассчитаем для каждой узловой точки высотные размеры профиля резца, измеренные вдоль передней поверхности
1.5 Рассчитаем высотные размеры профиля резца, необходимые для его изготовления и контроля
1.6 Проверим результаты аналитического расчета величин Т2, Т3, Т4 , Т5 г
55 руб.
Программа IZGIB версия 3.0
Администратор
: 4 июля 2009
Программа предназначена для расчета и построения эпюр поперечных сил, изгибающих моментов и прогиба балки.
Ответы на 25 вопросов по психологии
Donbass773
: 3 мая 2018
1. Опишите и проанализируйте специфику деятельности спортивного психолога с тренером и спортсменом
2. Опишите способности направлений и методов деятельности спортивного и медицинского психолога
3. Опишите особенности направлений и методов деятельности организационного психолога и психолога в силовых структурах
4. Опишите особенности направлений и методов деятельности психолога в образовании и организационного психолога
5. Опишите и проанализируйте работу психолога по обеспечению психологической
300 руб.