Базисные средства манипулирования реляционными данными
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных.
Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса - теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:
объединения отношений;
пересечения отношений;
взятия разности отношений;
прямого произведения отношений.
Специальные реляционные операции включают:
ограничение отношения;
проекцию отношения;
соединение отношений;
деление отношений.
Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.
5.1.1. Общая интерпретация реляционных операций
Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих подразделах, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.
При выполнении операции объединения двух отношений производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.
Операция пересечения двух отношений производит отношение, включающее все кортежи, входящие в оба отношения-операнда.
Отношение, являющееся разностью двух отношений включает все кортежи, входящие в отношение - первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом.
При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются конкатенацией (сцеплением) кортежей первого и второго операндов.
Результатом ограничения отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.
При выполнении проекции отношения на заданный набор его атрибутов производится отношение, кортежи которого производятся путем взятия соответствующих значений из кортежей отношения-операнда.
При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией кортежей первого и второго отношений и удовлетворяют этому условию.
У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.
Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.
Операция присваивания позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД.
Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.
5.1.2. Замкнутость реляционной алгебры и операция переименования
Как мы говорили в предыдущей лекции, каждое отношение характеризуется схемой (или заголовком) и набором кортежей (или телом). Поэтому, если действительно желать иметь алгебру, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т.е. оно должно обладать и телом, и заголовком. Только в этом случае будет действительно возможно строить вложенные выражения.
Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса - теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:
объединения отношений;
пересечения отношений;
взятия разности отношений;
прямого произведения отношений.
Специальные реляционные операции включают:
ограничение отношения;
проекцию отношения;
соединение отношений;
деление отношений.
Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.
5.1.1. Общая интерпретация реляционных операций
Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих подразделах, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.
При выполнении операции объединения двух отношений производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.
Операция пересечения двух отношений производит отношение, включающее все кортежи, входящие в оба отношения-операнда.
Отношение, являющееся разностью двух отношений включает все кортежи, входящие в отношение - первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом.
При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются конкатенацией (сцеплением) кортежей первого и второго операндов.
Результатом ограничения отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.
При выполнении проекции отношения на заданный набор его атрибутов производится отношение, кортежи которого производятся путем взятия соответствующих значений из кортежей отношения-операнда.
При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией кортежей первого и второго отношений и удовлетворяют этому условию.
У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.
Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.
Операция присваивания позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД.
Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.
5.1.2. Замкнутость реляционной алгебры и операция переименования
Как мы говорили в предыдущей лекции, каждое отношение характеризуется схемой (или заголовком) и набором кортежей (или телом). Поэтому, если действительно желать иметь алгебру, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т.е. оно должно обладать и телом, и заголовком. Только в этом случае будет действительно возможно строить вложенные выражения.
Другие работы
Героторный механизм Двигателя винтового забойного Д1-195-Деталировка: Фиксатор, Втулка, Корпус, Ниппель, Переходник-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
lenya.nakonechnyy.92@mail.ru
: 20 февраля 2018
Героторный механизм Двигателя винтового забойного Д1-195-Деталировка: Фиксатор, Втулка, Корпус, Ниппель, Переходник-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
553 руб.
Лабораторная №2 по дисциплине: Теория связи. Вариант 9
xtrail
: 9 августа 2024
1 Цель работы
Экспериментальное исследование сложных дискретных сигналов и особенностей их приёма согласованным фильтром.
2 Описание лабораторной установки
Лабораторная установка выполнена в виде программно управляемой модели на ПЭВМ
Краткое описание структурной схемы исследуемого оптимального (согласованного) фильтра (рисунок 2.1) приводится ниже.
3 Предварительный расчет
Структура заданной последовательности импульсов кода Баркера приведена в таблице 3.1.
Таблица 3.1
№ варианта: 9
Структура
300 руб.
Цилиндр гидравлический МЧ.03.00.00 деталировка
coolns
: 13 августа 2019
Цилиндр гидравлический сборочный чертеж
Цилиндр гидравлический чертежи
Цилиндр гидравлический деталирование
Цилиндр гидравлический скачать
Цилиндр гидравлический 3д модель
Цилиндр гидравлический Основные детали гидравлического цилиндра: корпус 1, поршень 2, вилка 6, соединяющаяся с поршнем 2 с помощью резьбы и штифта 10. Трубопровод соединён с цилиндром посредством двух штуцеров 3. При подаче под давлением масла поршень совершает возвратно-поступательное движение. Поршень внутри цилиндра и втул
550 руб.
Вариант №26. Державка сварочная поворотная
Чертежи
: 2 февраля 2019
Приспособление для закрепления электрода при электросварке и при подводе к нему тока. Представленная державка предназначена для сварочных работ в труднодоступных и неудобных местах. Электрод закрепляется в державке (3) двумя крепежными винтами, которые входят в два верхних отверстия с резьбой. В случае необходимости державка может быть повернута относительно рукоятки (1) вокруг болта (4), служащего осью, до нужного положения и закреплена зажимом (2), в поперечный паз которого входит нижний конец
130 руб.