Базисные средства манипулирования реляционными данными
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных.
Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса - теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:
объединения отношений;
пересечения отношений;
взятия разности отношений;
прямого произведения отношений.
Специальные реляционные операции включают:
ограничение отношения;
проекцию отношения;
соединение отношений;
деление отношений.
Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.
5.1.1. Общая интерпретация реляционных операций
Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих подразделах, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.
При выполнении операции объединения двух отношений производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.
Операция пересечения двух отношений производит отношение, включающее все кортежи, входящие в оба отношения-операнда.
Отношение, являющееся разностью двух отношений включает все кортежи, входящие в отношение - первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом.
При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются конкатенацией (сцеплением) кортежей первого и второго операндов.
Результатом ограничения отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.
При выполнении проекции отношения на заданный набор его атрибутов производится отношение, кортежи которого производятся путем взятия соответствующих значений из кортежей отношения-операнда.
При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией кортежей первого и второго отношений и удовлетворяют этому условию.
У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.
Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.
Операция присваивания позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД.
Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.
5.1.2. Замкнутость реляционной алгебры и операция переименования
Как мы говорили в предыдущей лекции, каждое отношение характеризуется схемой (или заголовком) и набором кортежей (или телом). Поэтому, если действительно желать иметь алгебру, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т.е. оно должно обладать и телом, и заголовком. Только в этом случае будет действительно возможно строить вложенные выражения.
Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса - теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:
объединения отношений;
пересечения отношений;
взятия разности отношений;
прямого произведения отношений.
Специальные реляционные операции включают:
ограничение отношения;
проекцию отношения;
соединение отношений;
деление отношений.
Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.
5.1.1. Общая интерпретация реляционных операций
Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих подразделах, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.
При выполнении операции объединения двух отношений производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.
Операция пересечения двух отношений производит отношение, включающее все кортежи, входящие в оба отношения-операнда.
Отношение, являющееся разностью двух отношений включает все кортежи, входящие в отношение - первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом.
При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются конкатенацией (сцеплением) кортежей первого и второго операндов.
Результатом ограничения отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.
При выполнении проекции отношения на заданный набор его атрибутов производится отношение, кортежи которого производятся путем взятия соответствующих значений из кортежей отношения-операнда.
При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией кортежей первого и второго отношений и удовлетворяют этому условию.
У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.
Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.
Операция присваивания позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД.
Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.
5.1.2. Замкнутость реляционной алгебры и операция переименования
Как мы говорили в предыдущей лекции, каждое отношение характеризуется схемой (или заголовком) и набором кортежей (или телом). Поэтому, если действительно желать иметь алгебру, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т.е. оно должно обладать и телом, и заголовком. Только в этом случае будет действительно возможно строить вложенные выражения.
Другие работы
Розв’язання задачі Коші для звичайного диференціального рівняння першого порядку методом Ейлера
Qiwir
: 5 октября 2013
План
1. Постановка задачі
2. Визначення. Загальні відомості про задачу Коші для звичайних диференціальних рівнянь першого порядку
3. Розв’язання задачі Коші для звичайних диференціальних рівнянь першого порядку методом Ейлера
а) похибка при вирішенні задачі Коші для звичайних диференціальних рівнянь першого порядку методом Ейлера. Алгоритм розв’язання диференціального рівняння першого порядку методом Ейлера
4. Блок – схема
5. Реалізація алгоритму у с
10 руб.
Макрорегулювання економіки України (реферат)
DocentMark
: 31 октября 2012
Вступ
1. Суть та інструментарій макроекономічного регулювання
1.1. Поняття макроекономічного регулювання.
1.2. Необхідність і моделі макроекономічного регулювання.
2. Макроекономiчна координація в командно-адмiнiстративнiй економіці.
2.1. Суть директивного планування.
2.2. Причини постійної розбалансованості в економіці.
2.3. Причини краху командної економіки.
3. Становлення макрорегулювання ринкового типу в економіці України.
3.1. Формування фіскальних інструментів, як основного знаряддя
5 руб.
Математический анализ. Контрольная работа. 1-й семестр, вариант 5-й
lidaZ
: 14 ноября 2016
Сибгути Математический анализ. Контрольная работа 1 семестр, вариант 5, оценка - зачет.
Дистанционное обучение
Дисциплина «Математический анализ». Часть 1
Вариант № 5
1. Найти пределы
2. Найти производные данных функций
3. Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4. Дана функция . Найти все её частные производные второго порядка.
5. Найти неопределенные интегралы
110 руб.
Задание 16. Вариант 22 - Комплексный чертеж отрезков
Чертежи по сборнику Боголюбова 2007
: 30 сентября 2024
Возможные программы для открытия данных файлов:
WinRAR (для распаковки архива *.zip или *.rar)
КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d
Любая программа для ПДФ файлов.
Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007.
Задание 16. Вариант 22 - Комплексный чертеж отрезков.
По заданным координатам концов отрезков АВ и CD построить комплексный чертеж. Определить взаимное положение отрезков.
В состав выполненной работы входят 2 файла:
1. Чертеж формата А
80 руб.