Экспертная система прогнозирования успеваемости студентов в ВУЗах
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
ВВЕДЕНИЕ
Проблемы прогнозирования результатов сессии студентов в высшем учебном заведении в современных рыночных условиях являются актуальными по множеству причин. Во-первых, подготовка квалифицированных специалистов – это одна из главных задач любого образовательного учреждения. Во-вторых, управление процессом обучения студентов в условиях влияния множества внешних факторов является сложной задачей, как в организационном, так и социально-экономическом плане, требующем системного подхода и разработки новых методов и моделей управления.
Проблема построения модели, экспертной системы прогнозирования результатов сессии на основании анализа текущей успеваемости, заключается в сложности входящих в модель данных. При исследовании поведения студентов учтены, как количественны показатели, так и качественные, можно сказать, что исходные данные сложно формализируемые.
Целью работы является, построение продукционной модели экспертной системы прогнозирования результатов сессии, на основании анализа текущей успеваемости, и ее реализация в языке логического программирования Visual Prolog. Объектом исследования является процесс получения образования в высшем учебном заведении. Предмет исследования - методы построения базы знаний в экспертных системах, а именно продукционная модель.
При построении экспертной системы прогнозирования результатов сессии, на основе текущей успеваемости, выделяют следующие задачи исследования:
1. Сбор информации о объекте исследования, а именно о процессе обучения и системе оценивания студентов всех курсов.
2. Изучение методов построения базы знаний и выбор наилучшего.
3. Представление продукционной модели построения базы знаний.
4. Изучение механизмов логического вывода.
5. Реализация экспертной системы в языке логического программирования Visual Prolog
Для данной экспертной системы была выбрана продукционная модель построения базы знаний, потому что она являются наиболее наглядным средствами представления знаний. Она близка к логическим моделям, что позволяет организовывать на ее базе эффективные процедуры вывода, и в то же время более наглядно (чем классические логические модели) отражает знания. Продукционная модель привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой логического вывода.
В результате исследования будет создана структура продукционной модели построения баз знаний в экспертной системе прогнозирования результатов сдачи сессии на основе текущей успеваемости.
РАЗДЕЛ 1. ЭКСПЕРТНЫЕ СИСТЕМЫ
В середине семидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название экспертные системы. Цель исследований по экспертным системам состоит в разработке программ (устройств), которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. В большинстве случаев экспертные системы решают трудно формализуемые задачи или задачи, не имеющие алгоритмического решения.
Экспертная система - программно-техническое средство, позволяющее пользователю в диалоговом режиме получать от компьютера консультационную помощь в конкретной предметной области, где сконцентрированы опыт и знания людей-экспертов (специалистов в данной области).
Экспертные системы – программы для компьютера, которые могут воспроизводить процесс решения проблемы человеком-экспертом.[1]
Экспертная система - программа, которая использует знания специалистов (экспертов) о некоторой конкретной узкоспециализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта-профессионала. [2]
Экспертные системы - прикладные программы ИИ, в которых база знаний представляет собой формализованные эмпирические знания высококвалифицированных специалистов (экспертов) в какой-либо узкой предметной области.[3]
Экспертная система - программа для компьютера, которая оперирует со знаниями в определенной предметной области с целью выработки рекомендаций или решения проблем.[3]
В основе функционирования ЭС лежит использование знаний, а манипулирование ими осуществляется на базе эвристических правил, сформулированных экспертами. ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы) на основе дедуктивных рассуждений. Главное достоинство экспертных систем - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов.
1.1 Классификация и виды экспертных систем
Для классификации ЭС [5] используют следующие признаки:
1. Способ формирования решения;
2. Способ учета временного признака;
3. Вид используемых данных;
4. Число используемых источников решения знаний;
Проблемы прогнозирования результатов сессии студентов в высшем учебном заведении в современных рыночных условиях являются актуальными по множеству причин. Во-первых, подготовка квалифицированных специалистов – это одна из главных задач любого образовательного учреждения. Во-вторых, управление процессом обучения студентов в условиях влияния множества внешних факторов является сложной задачей, как в организационном, так и социально-экономическом плане, требующем системного подхода и разработки новых методов и моделей управления.
Проблема построения модели, экспертной системы прогнозирования результатов сессии на основании анализа текущей успеваемости, заключается в сложности входящих в модель данных. При исследовании поведения студентов учтены, как количественны показатели, так и качественные, можно сказать, что исходные данные сложно формализируемые.
Целью работы является, построение продукционной модели экспертной системы прогнозирования результатов сессии, на основании анализа текущей успеваемости, и ее реализация в языке логического программирования Visual Prolog. Объектом исследования является процесс получения образования в высшем учебном заведении. Предмет исследования - методы построения базы знаний в экспертных системах, а именно продукционная модель.
При построении экспертной системы прогнозирования результатов сессии, на основе текущей успеваемости, выделяют следующие задачи исследования:
1. Сбор информации о объекте исследования, а именно о процессе обучения и системе оценивания студентов всех курсов.
2. Изучение методов построения базы знаний и выбор наилучшего.
3. Представление продукционной модели построения базы знаний.
4. Изучение механизмов логического вывода.
5. Реализация экспертной системы в языке логического программирования Visual Prolog
Для данной экспертной системы была выбрана продукционная модель построения базы знаний, потому что она являются наиболее наглядным средствами представления знаний. Она близка к логическим моделям, что позволяет организовывать на ее базе эффективные процедуры вывода, и в то же время более наглядно (чем классические логические модели) отражает знания. Продукционная модель привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой логического вывода.
В результате исследования будет создана структура продукционной модели построения баз знаний в экспертной системе прогнозирования результатов сдачи сессии на основе текущей успеваемости.
РАЗДЕЛ 1. ЭКСПЕРТНЫЕ СИСТЕМЫ
В середине семидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название экспертные системы. Цель исследований по экспертным системам состоит в разработке программ (устройств), которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. В большинстве случаев экспертные системы решают трудно формализуемые задачи или задачи, не имеющие алгоритмического решения.
Экспертная система - программно-техническое средство, позволяющее пользователю в диалоговом режиме получать от компьютера консультационную помощь в конкретной предметной области, где сконцентрированы опыт и знания людей-экспертов (специалистов в данной области).
Экспертные системы – программы для компьютера, которые могут воспроизводить процесс решения проблемы человеком-экспертом.[1]
Экспертная система - программа, которая использует знания специалистов (экспертов) о некоторой конкретной узкоспециализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта-профессионала. [2]
Экспертные системы - прикладные программы ИИ, в которых база знаний представляет собой формализованные эмпирические знания высококвалифицированных специалистов (экспертов) в какой-либо узкой предметной области.[3]
Экспертная система - программа для компьютера, которая оперирует со знаниями в определенной предметной области с целью выработки рекомендаций или решения проблем.[3]
В основе функционирования ЭС лежит использование знаний, а манипулирование ими осуществляется на базе эвристических правил, сформулированных экспертами. ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы) на основе дедуктивных рассуждений. Главное достоинство экспертных систем - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов.
1.1 Классификация и виды экспертных систем
Для классификации ЭС [5] используют следующие признаки:
1. Способ формирования решения;
2. Способ учета временного признака;
3. Вид используемых данных;
4. Число используемых источников решения знаний;
Другие работы
Проектирование и исследование механизмов вытяжного пресса (Вариант 1-10)
yura909090
: 25 мая 2012
СОДЕРЖАНИЕ
1. Задание на курсовое проектирование
1.1 Описание механизма
1.2 Исходные данные
2. Проектирование кривошипно-коромыслового
механизма и выбор маховика
2.1 Определение основных размеров звеньев механизма
2.2 Построение планов положений механизма и планов
скоростей
2.3 Приведение масс и сил
2.4 Определение избыточной работы внешних сил
2.5 Определение момента инерции маховика
3. Определение закона движения и силовой расчет
кривошипно-коромыслового механизма
3.1 Опре
100 руб.
Круговая диаграмма газораспределения двигателя SKL 6 VDS 48/42 AL-2
Laguz
: 25 июля 2025
Круговая диаграмма газораспределения двигателя SKL 6 VDS 48/42 AL-2 чертеж в компасе 16 + дополнительно сохранён в джпг
Файлы компаса можно просматривать и сохранять в нужный формат бесплатной программой КОМПАС-3D Viewer.
120 руб.
Гидравлика Пермская ГСХА Задача 97 Вариант 4
Z24
: 6 ноября 2025
Из резервуара A животноводческого помещения сточные воды перекачиваются центробежным насосом по трубопроводу в общий резервуар-накопитель B, где сточные воды проходят биологическую очистку. Перепад горизонтов в резервуарах A и B составляет ΔZ. При условии, что заданы длины и диаметры всасывающей и нагнетательной магистралей, расход сети Q и другие данные требуется:
Выбрать типоразмер насосного агрегата и установить режим его работы на сети.
Вычислить мощность на валу насоса и приводного двиг
220 руб.
Роль менеджера по персоналу на предприятии
Slolka
: 7 апреля 2014
Введение…………………………………………………………………………..3
Глава 1. Кадровая политика и кадровая стратегия предприятия.......................5
1.1. Понятие кадровой политики предприятия………….……………….5
1.2. Ключевые элементы кадровой стратегии предприятия……...……..7
Глава 2. Кадровый менеджмент предприятия…………………………………..8
2.1. Понятие и основные модели кадрового менеджмента……………...8
2.2.Основные типы профессиональной культуры кадрового
менеджмента……………………………………………………………………...13
Глава 3. Профессия «Менеджер по персонал
5 руб.