Моделирование сети кластеризации данных в MATLAB NEURAL NETWORK TOOL
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
СОДЕРЖАНИЕ
Введение
1. Общие сведения о кластеризации
1.1 Понятие кластеризации
1.2 Процесс кластеризации
1.3 Алгоритмы кластеризации
1.3.1 Иерархические алгоритмы
1.3.2 k-Means алгоритм
1.3.3 Минимальное покрывающее дерево
1.3.4 Метод ближайшего соседа
1.3.5 Алгоритм нечеткой кластеризации
1.3.6 Применение нейронных сетей
1.3.7 Генетические алгоритмы
1.4 Применение кластеризации
2. Сеть Кохонена
2.1 Структура сети Кохонена
2.2 Обучение сети Кохонена
2.3 Выбор функции «соседства»
2.4 Карта Кохонена
2.5 Задачи, решаемые при помощи карт Кохонена
3. Моделирование сети кластеризации данных в MATLAB NEURAL NETWORK TOOLBOX
3.1 Самоорганизующиеся нейронные сети в MATLAB NNT
3.1.1 Архитектура сети
3.1.2 Создание сети
3.1.3 Правило обучения слоя Кохонена
3.1.4 Правило настройки смещений
3.1.5 Обучение сети
3.1.6 Моделирование кластеризации данных
3.2 Карта Кохонена в MATLAB NNT
3.2.1 Топология карты
3.2.2 Функции для расчета расстояний
3.2.3 Архитектура сети
3.2.4 Создание сети
3.2.5 Обучение сети
3.2.6 Моделирование одномерной карты Кохонена
3.2.7 Моделирование двумерной карты Кохонена
Выводы
Перечень ссылок
ВВЕДЕНИЕ
В настоящее время ни у кого не вызывает удивления проникновение компьютеров практически во все сферы человеческой деятельности. Совершенствование элементной базы, определяющей архитектуру компьютера, и распараллеливания вычислений позволяют быстро и эффективно решать задачи все возрастающей сложности. Решение многих проблем немыслимо без применения компьютеров. Однако, обладая огромным быстродействием, компьютер часто не в состоянии справиться с поставленной перед ним задачей так, как бы это сделал человек. Примерами таких задач могут быть задачи распознавания, понимания речи и текста, написанного от руки, и многие другие. Таким образом, сеть нейронов, образующая человеческий мозг, являясь, как и компьютерная сеть, системой параллельной обработки информации, во многих случаях оказывается более эффективной. Идея перехода от обработки заложенным в компьютер алгоритмом некоторых формализованных знаний к реализации в нем свойственных человеку приемов обработки информации привели к появлению искусственных нейронных сетей (ИНС).
Отличительной особенностью биологических систем является адаптация, благодаря которой такие системы в процессе обучения развиваются и приобретают новые свойства. Как и биологические нейронные сети, ИНС состоят из связанных между собой элементов, искусственных нейронов, функциональные возможности которых в той или иной степени соответствуют элементарным функциям биологического нейрона. Как и биологический прототип, ИНС обладает следующим свойствами:
· адаптивное обучение;
· самоорганизация;
· вычисления в реальном времени;
· устойчивость к сбоям.
Введение
1. Общие сведения о кластеризации
1.1 Понятие кластеризации
1.2 Процесс кластеризации
1.3 Алгоритмы кластеризации
1.3.1 Иерархические алгоритмы
1.3.2 k-Means алгоритм
1.3.3 Минимальное покрывающее дерево
1.3.4 Метод ближайшего соседа
1.3.5 Алгоритм нечеткой кластеризации
1.3.6 Применение нейронных сетей
1.3.7 Генетические алгоритмы
1.4 Применение кластеризации
2. Сеть Кохонена
2.1 Структура сети Кохонена
2.2 Обучение сети Кохонена
2.3 Выбор функции «соседства»
2.4 Карта Кохонена
2.5 Задачи, решаемые при помощи карт Кохонена
3. Моделирование сети кластеризации данных в MATLAB NEURAL NETWORK TOOLBOX
3.1 Самоорганизующиеся нейронные сети в MATLAB NNT
3.1.1 Архитектура сети
3.1.2 Создание сети
3.1.3 Правило обучения слоя Кохонена
3.1.4 Правило настройки смещений
3.1.5 Обучение сети
3.1.6 Моделирование кластеризации данных
3.2 Карта Кохонена в MATLAB NNT
3.2.1 Топология карты
3.2.2 Функции для расчета расстояний
3.2.3 Архитектура сети
3.2.4 Создание сети
3.2.5 Обучение сети
3.2.6 Моделирование одномерной карты Кохонена
3.2.7 Моделирование двумерной карты Кохонена
Выводы
Перечень ссылок
ВВЕДЕНИЕ
В настоящее время ни у кого не вызывает удивления проникновение компьютеров практически во все сферы человеческой деятельности. Совершенствование элементной базы, определяющей архитектуру компьютера, и распараллеливания вычислений позволяют быстро и эффективно решать задачи все возрастающей сложности. Решение многих проблем немыслимо без применения компьютеров. Однако, обладая огромным быстродействием, компьютер часто не в состоянии справиться с поставленной перед ним задачей так, как бы это сделал человек. Примерами таких задач могут быть задачи распознавания, понимания речи и текста, написанного от руки, и многие другие. Таким образом, сеть нейронов, образующая человеческий мозг, являясь, как и компьютерная сеть, системой параллельной обработки информации, во многих случаях оказывается более эффективной. Идея перехода от обработки заложенным в компьютер алгоритмом некоторых формализованных знаний к реализации в нем свойственных человеку приемов обработки информации привели к появлению искусственных нейронных сетей (ИНС).
Отличительной особенностью биологических систем является адаптация, благодаря которой такие системы в процессе обучения развиваются и приобретают новые свойства. Как и биологические нейронные сети, ИНС состоят из связанных между собой элементов, искусственных нейронов, функциональные возможности которых в той или иной степени соответствуют элементарным функциям биологического нейрона. Как и биологический прототип, ИНС обладает следующим свойствами:
· адаптивное обучение;
· самоорганизация;
· вычисления в реальном времени;
· устойчивость к сбоям.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.