Программа для решения дифференциальных уравнений первого порядка методом Рунге-Кутта
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ
2. ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ (ПО)
2.1 Назначение программного продукта
2.2 Основные задачи
2.3 Входные и выходные данные
3. ПРОЕКТИРОВАНИЕ
3.1 Выделение основных объектов ПО
3.2 Описание полей и методов
3.3 Иерархия классов на основе выделенных объектов
4. ОСНОВНЫЕ ФОРМЫ И КОМПОНЕНТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ РЕАЛИЗАЦИИ ПРОГРАММЫ. ОСНОВНЫЕ АЛГОРИТМИЧЕСКИЕ РЕШЕНИЯ РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ
4.1 Метод Рунге-Кутта
4.2 Описание программы ” РЕШЕНИЕ ОДУ “
4.3 Назначение элементов графического окна программы
4.4 Реакция программы при возникновении ошибок
4.5 Перечень компонент DELPHI использованных в программе
5. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ТРЕБОВАНИЯ К ПО
6. ТЕКСТ ПРОГРАММЫ
7. РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ Y = Y−2X/Y МЕТОДОМ РУНГЕ – КУТТА В СРЕДЕ EXCEL
ВЫВОД
1. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ
Delphi является объектно-ориентированной средой программирования. В качестве языка программирования используется язык Object Pascal.
Исторически сложилось так, что программирование возникло и развивалось как процедурное программирование, которое предполагает, что основой программы является алгоритм, процедура обработки данных.
Объектно-ориентированное программирование (ООП) — это методика разработки программ, в основе которой лежит понятие объект. Объект — это некоторая структура, соответствующая объекту реального мира, его поведению. Задача, решаемая с использованием методики ООП, описывается в терминах объектов и операций над ними, а программа при таком подходе представляет собой набор объектов и связей между ними. Объектно-ориентированное программирование позволяет конструировать новые и производные (дочерние) классы на основе существующих классов.
2. ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ (ПО)
2.1 Назначение программного продукта
2.2 Основные задачи
2.3 Входные и выходные данные
3. ПРОЕКТИРОВАНИЕ
3.1 Выделение основных объектов ПО
3.2 Описание полей и методов
3.3 Иерархия классов на основе выделенных объектов
4. ОСНОВНЫЕ ФОРМЫ И КОМПОНЕНТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ РЕАЛИЗАЦИИ ПРОГРАММЫ. ОСНОВНЫЕ АЛГОРИТМИЧЕСКИЕ РЕШЕНИЯ РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ
4.1 Метод Рунге-Кутта
4.2 Описание программы ” РЕШЕНИЕ ОДУ “
4.3 Назначение элементов графического окна программы
4.4 Реакция программы при возникновении ошибок
4.5 Перечень компонент DELPHI использованных в программе
5. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ТРЕБОВАНИЯ К ПО
6. ТЕКСТ ПРОГРАММЫ
7. РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ Y = Y−2X/Y МЕТОДОМ РУНГЕ – КУТТА В СРЕДЕ EXCEL
ВЫВОД
1. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ
Delphi является объектно-ориентированной средой программирования. В качестве языка программирования используется язык Object Pascal.
Исторически сложилось так, что программирование возникло и развивалось как процедурное программирование, которое предполагает, что основой программы является алгоритм, процедура обработки данных.
Объектно-ориентированное программирование (ООП) — это методика разработки программ, в основе которой лежит понятие объект. Объект — это некоторая структура, соответствующая объекту реального мира, его поведению. Задача, решаемая с использованием методики ООП, описывается в терминах объектов и операций над ними, а программа при таком подходе представляет собой набор объектов и связей между ними. Объектно-ориентированное программирование позволяет конструировать новые и производные (дочерние) классы на основе существующих классов.
Похожие материалы
Экспериментальное исследование свойств методов Рунге-Кутты
Elfa254
: 6 октября 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 ПОСТАНОВКА ЗАДАЧИ
1.1 Приведение к нормальной форме Коши
1.2 Метод Рунге-Кутты второго порядка
2 ОПИСАНИЕ ПРОГРАММНЫХ МОДУЛЕЙ
2.1 Основная программа
2.2 Функция вычисления точного решения
2.3 Процедура вычисления правых частей системы уравнений в нормальной форме Коши
2.4 Процедура RK2
2.5 Процедура RK4
3 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МЕТОДОВ РУНГЕ-КУТТЫ
3.1 Анализ влияния величины шага на точность интегрирования методами Рунге-Кутты второго и четвертого порядк
10 руб.
Исчисления методами Лагранжа Рунге Кутта Ньютона и Гаусса
Elfa254
: 10 августа 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 2
1.Задача 1
Постановка задачи
Решение 4
2. Задача 2
2.1.Постановка задачи
2.2.Решение 6
3.Задача 3
3.1.Постановка задачи
3.2.Решение 10
4.Задача 4
4.1.Постановка задачи
4.2.Решение 15
СПИСОК ЛИТЕРАТУРЫ 16
ВВЕДЕНИЕ
Основой автоматизации умственного труда человека является широкое внедрение вычислительной техники во все сферы деятельности человека . Применение ЭВМ ускорило процесс математизации науки и техники . Расширяется круг профессий ,для которых математическая грамот
Численные методы решения дифференциальных уравнений(метод Эйлера, метод Рунге-Кутта)
xtrail
: 18 февраля 2013
Курсовая работа по информатике, 3 вариант, 1 курс (2 семестр)
Оглавление
I. Содержание задания 3
II. Математическая постановка задачи 3
III. Описание преобразования заданного уравнения 2-го порядка к системе уравнений 1-го порядка 5
IV. Численные методы решения дифференциальных уравнений 5
V. Метод Рунге-Кутта. 6
VI. Блок-схема алгоритма решения системы дифференциальных уравнений 1-го порядка методом Рунге-Кутта 7
VII. Выполнение задачи в программе Pascal 9
VIII. Выполнение задачи в прог
230 руб.
Программа. Процедура решения диф. уровнения методом Рунге-Кутта 4-го порядка
Dresk
: 8 мая 2010
Задание
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени.
Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 0,0001 Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, резу
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.