Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №3
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
Описание
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля в скриншоте.
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля в скриншоте.
Дополнительная информация
2011. Зачтено.
Похожие материалы
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №3.
zhekaersh
: 5 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифр
40 руб.
Теория сложностей вычислительных процессов и структур, лабораторная работа № 4, вариант № 3
alexxxxxxxela
: 5 сентября 2014
Постановка задачи
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Вершина 5.
180 руб.
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
1231233
: 31 января 2012
Лабораторная работа №3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вариант 3
23 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
zhekaersh
: 5 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
40 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Bodibilder
: 29 мая 2019
Лабораторная работа №4
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирае
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
nik200511
: 7 июня 2018
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
Вершина 0.
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5
gnv1979
: 29 мая 2017
Лабораторная 4.
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 5
Вершина 4.
0 0 0 23 0 0
0 0 0 0 2 0
0 0 0 0 27 0
45 руб.
Другие работы
Теоретическая механика СамГУПС Самара 2020 Задача Д1 Рисунок 0 Вариант 3
Z24
: 9 ноября 2025
Применение теоремы об изменении кинетической энергии к исследованию движения механической системы
Механическая система состоит из трёх движущихся тел (рис. Д1.0 –Д1.9), соединенных нерастяжимыми нитями, параллельными соответствующим плоскостям. Неподвижные и подвижные блоки одного радиуса считать однородными сплошными цилиндрами радиуса R; ступенчатые блоки (подвижные и неподвижные) с радиусами ступеней R и r имеют радиус инерции ρ. К одному из тел прикреплена пружина жёсткости c. Под действи
250 руб.
Теплотехника МГУПП 2015 Задача 2.1 Вариант 25
Z24
: 7 января 2026
Влажный насыщенный пар массой 1 кг и давлением р1 со степенью сухости х1 превращается при постоянном давлении в перегретый пар со степенью перегрева Δt. Затем пар изохорно охлаждается до состояния влажного насыщенного пара со степенью сухости х3. Определить (с помощью диаграммы hs для водяного пара):
термодинамические параметры пара в характерных точках 1, 2 и 3;
работу изобарного и изохорного процессов.
Изобразить данные процессы в координатах pV, TS и hs.
200 руб.
Зачетная работа по дисциплине: "Теория массового обслуживания". Билет №15
wowan1190
: 14 декабря 2013
Вопрос №1: Классификация состояний цепи Маркова. Условия стационарности и эргодичности.
Вопрос №2: СМО с конечным накопителем.
70 руб.
Подземные топливные баки: насколько они опасны ?
GnobYTEL
: 16 марта 2013
Подземные топливные баки: насколько они опасны?
Всегда очень болезненно и трудно обсуждать проблему хранения топливных баков под землей. Однако, угрозы окружающей среде топливными утечками и загрязнение подземных вод опять делают злободневным вопрос о подземных
топливных ёмкостях.
“Подземные топливные баки являются одной из самых серьёзных проблем любого с/х предприятия в следствии природы продукта, который они содержат,”-говорит Вилма Миллер, координатор программы Мичиганского Государственного