Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №3

Цена:
79 руб.

Состав работы

material.view.file_icon
material.view.file_icon Лабораторная работа №4.doc
material.view.file_icon input.txt
material.view.file_icon laba4.exe
material.view.file_icon laba4.PAS
material.view.file_icon OUTPUT.TXT
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word
  • Программа для просмотра текстовых файлов

Описание

Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры

Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля в скриншоте.

Дополнительная информация

2011. Зачтено.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №3.
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифр
User zhekaersh : 5 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №3.
Теория сложностей вычислительных процессов и структур, лабораторная работа № 4, вариант № 3
Постановка задачи Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 3 Вершина 5.
User alexxxxxxxela : 5 сентября 2014
180 руб.
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
Лабораторная работа №3 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Вариант 3
User 1231233 : 31 января 2012
23 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
User zhekaersh : 5 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Лабораторная работа №4 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирае
User Bodibilder : 29 мая 2019
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 1 Вершина 0.
User nik200511 : 7 июня 2018
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5
Лабораторная 4. Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 5 Вершина 4. 0 0 0 23 0 0 0 0 0 0 2 0 0 0 0 0 27 0
User gnv1979 : 29 мая 2017
45 руб.
Теоретическая механика СамГУПС Самара 2020 Задача Д1 Рисунок 0 Вариант 3
Применение теоремы об изменении кинетической энергии к исследованию движения механической системы Механическая система состоит из трёх движущихся тел (рис. Д1.0 –Д1.9), соединенных нерастяжимыми нитями, параллельными соответствующим плоскостям. Неподвижные и подвижные блоки одного радиуса считать однородными сплошными цилиндрами радиуса R; ступенчатые блоки (подвижные и неподвижные) с радиусами ступеней R и r имеют радиус инерции ρ. К одному из тел прикреплена пружина жёсткости c. Под действи
User Z24 : 9 ноября 2025
250 руб.
Теоретическая механика СамГУПС Самара 2020 Задача Д1 Рисунок 0 Вариант 3
Теплотехника МГУПП 2015 Задача 2.1 Вариант 25
Влажный насыщенный пар массой 1 кг и давлением р1 со степенью сухости х1 превращается при постоянном давлении в перегретый пар со степенью перегрева Δt. Затем пар изохорно охлаждается до состояния влажного насыщенного пара со степенью сухости х3. Определить (с помощью диаграммы hs для водяного пара): термодинамические параметры пара в характерных точках 1, 2 и 3; работу изобарного и изохорного процессов. Изобразить данные процессы в координатах pV, TS и hs.
User Z24 : 7 января 2026
200 руб.
Теплотехника МГУПП 2015 Задача 2.1 Вариант 25
Зачетная работа по дисциплине: "Теория массового обслуживания". Билет №15
Вопрос №1: Классификация состояний цепи Маркова. Условия стационарности и эргодичности. Вопрос №2: СМО с конечным накопителем.
User wowan1190 : 14 декабря 2013
70 руб.
Подземные топливные баки: насколько они опасны ?
Подземные топливные баки: насколько они опасны? Всегда очень болезненно и трудно обсуждать проблему хранения топливных баков под землей. Однако, угрозы окружающей среде топливными утечками и загрязнение подземных вод опять делают злободневным вопрос о подземных топливных ёмкостях. “Подземные топливные баки являются одной из самых серьёзных проблем любого с/х предприятия в следствии природы продукта, который они содержат,”-говорит Вилма Миллер, координатор программы Мичиганского Государственного
User GnobYTEL : 16 марта 2013
up Наверх