Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №2
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 2
Вершина 1.
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 2
Вершина 1.
Дополнительная информация
Год сдачи - 2013, зачет
Галкина М.Ю.
Галкина М.Ю.
Похожие материалы
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №2
zhekaersh
: 2 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по по
40 руб.
Лабораторная работа № 3 по курсу: “Теория сложностей вычислительных процессов и структур”. Вариант № 2.
Doctor_Che
: 9 февраля 2012
Номер варианта: 2.
Задание на лабораторную работу: “Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана”.
Условие задачи:
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующ
35 руб.
Лабораторная работа № 3 по курсу: “Теория сложностей вычислительных процессов и структур”.
mamontynok
: 28 января 2014
Номер варианта: 2.
Задание на лабораторную работу: “Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана”.
Условие задачи:
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующ
34 руб.
Лабораторная работа № 3 по дисциплине "Теория сложностей вычислительных процессов и структур"
1231233
: 31 января 2012
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по посл
23 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
zhekaersh
: 2 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по по
40 руб.
Теория сложностей вычислительных процессов и структур, лабораторная работа № 3, вариант № 3
alexxxxxxxela
: 5 сентября 2014
Постановка задачи
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Вершина 2.
180 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
wchg
: 15 октября 2013
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по посл
79 руб.
Другие работы
Основы построения инфокоммуникационных систем и сетей. Экзамен. Билет №12
glebova95
: 15 июня 2021
Основы построения инфокоммуникационных систем и сетей. (Архитектура телекоммуникационных систем и сетей) Экзамен. Билет 12
1. Относительная фазовая модуляция. Формирование ОФМ-сигнала. Когерентный и не когерентный прием. Многопозиционная и амплитудно-фазовая модуляции.
2. Среды передачи, используемые в компьютерных сетях. Их характеристики и возможности.
3. За время испытаний 2 часа, при скорости модуляции 600 бод было ошибочно принято 10 единичных элементов. Все элементы сгруппированы в кодо
62 руб.
Регулювання стоку
GnobYTEL
: 21 января 2012
Контрольна робота з дисципліни: « Гідрологія».
Зміст.
Регулювання стоку.
Види регулювання стоку.
Реглювання стоку водосховищем.
Спеціальні види регулювання стоку.
Література.
11 руб.
Карта эскизов бланк в компасе
Laguz
: 23 октября 2024
Карта эскизов ГОСТ 3.1105-84 форма 7, форма 7а.
Сделано в компас 16
60 руб.
Расчет подъемника для легковых автомобилей
ostah
: 6 сентября 2011
СОДЕРЖАНИЕ
ЗАДАНИЕ 2
РЕФЕРАТ 4
ВВЕДЕНИЕ 7
1 ТЕХНИЧЕСКОЕ ЗАДАНИЕ 8
1.1 Наименование и область применения 8
1.2 Обоснование для разработки 8
1.3 Цель и назначение разработки 8
1.4 Источники разработки 8
1.5 Технические требования 8
1.6 Экономические показатели 9
1.7 Стадии и этапы разработки 9
1.8 Порядок контроля и приемки подлежащих утверждению 9
2 ТЕХНИЧЕСКОЕ ПРЕДЛОЖЕНИЕ 10
2.1 Уточнение технического задания……………….…………………………….10
2.2 Подбор материала 10
2.3 Проверка вариантов 15
2.4 Оценка
45 руб.