Экзаменационная работа по теории сложностей и вычислительных процессов. Билет № 5

Состав работы

material.view.file_icon
material.view.file_icon Экзаменационная работа (Теория сложностей вычислительных процессов и структур).doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.

2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 03.2014
Рецензия:Уважаемый
поздравляю Вас с успешным завершением курса ТСВПиС.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0
User Учеба "Под ключ" : 25 января 2026
500 руб.
promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №5
Билет №5 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 2 4 7 1 2 0 5 9 6 4 5 0 8 3 7 9 8 0 1 1 6 3 1 0 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[
User Roma967 : 25 сентября 2015
350 руб.
promo
Экзаменационная работа теория сложностей вычислительных процессов
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 0 38 53 0 0 0 0 43 0 38 0 0 31 0 53 43 31 0 58 0 0 0 58 0 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User Despite : 14 октября 2014
100 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0 2)
400 руб.
promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 0 5 2 7) (6 0 4 1 3 2) (0 4 0 7 4 3) (5 1 7 0 6 1) (2 3 4 6 0 0) (7 2 3 1 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
User Roma967 : 21 мая 2025
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12 promo
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8
Билет №8 1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 7 7 7 1 4) (7 0 1 7 0 5) (7 1 0 5 6 4) (7 7 5 0 7 4) (1 0 6 7 0 4) (4 5 4 4 4 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограни
User Roma967 : 11 января 2025
350 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8 promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 6
Билет №6 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 2 7 2 2) (6 0 0 1 2 5) (2 0 0 4 0 7) (7 1 4 0 1 7) (2 2 0 1 0 0) (2 5 7 7 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического
User SibGOODy : 21 августа 2024
350 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Билет №4 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User Roma967 : 8 января 2024
350 руб.
promo
Циркуляционный насос wilo Чертеж
Чертеж циркуляционного насоса wilo сделан в компасе, автокаде, сохранен в пдф
User Laguz : 23 октября 2024
350 руб.
Циркуляционный насос wilo Чертеж
Назначение и состав пояснительной записки к бухгалтерскому балансу
1. Общие требования к раскрытию учетных данных в пояснительной записке. С.5 2. Разделы пояснительной записки. С.10 2.1.Общие сведения об организации С.10 2.2. Учетная политика С.12 2.3. Сравнительные данные С.13 2.4. Анализ и оценка структуры баланса и динамика прибыли С.14 2.5. Пояснения к существенным статьям бухгалтерского баланса С.15 2.6. Информация о совместной деятельности С.22 2.7. Информация по сегментам С.24 2.8. Информация о прекращаемой деятельности С.25 2.9.События после о
User Slolka : 30 декабря 2014
10 руб.
Работа зачетная "Дополнительные главы математического анализа" Билет №9
Билет № 9 1. Вычислить интеграл с точностью 0,001, раскладывая подынтегральную функцию в степенной ряд 2. Разложить функцию в ряд Фурье на данном отрезке (период Т) 3. Вычислить а) ; б) . 4. Вычислить интеграл по замкнутому контуру с помощью вычетов ; 5. Найти решение дифференциального уравнения операторным методом , ,
User Kolian : 3 ноября 2017
300 руб.
Работа зачетная "Дополнительные главы математического анализа" Билет №9
Планирование и прогнозирование природопользования
СОДЕРЖАНИЕ Введение 1. Планирование и прогнозирование природопользования 1.1 Методологические основы планирования природопользования 1.2 Объективная необходимость планирования природопользования 1.3 Планирование использования природных ресурсов на предприятиях 2. Прогнозирование в природопользовании 2.1 Сущность прогнозирования в природопользовании 2.2 Методологические основы прогнозирования природопользовании 2.3 Особенности прогнозирования в природопользовании 2.4 Основные методы прогнозирован
User elementpio : 19 марта 2013
up Наверх