Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №2.

Состав работы

material.view.file_icon
material.view.file_icon matr.txt
material.view.file_icon tsvp_lab4.exe
material.view.file_icon tsvp_lab4.pas
material.view.file_icon лр4.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры

Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).
Данные считать из файла.

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 25.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №2
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре
User bvv1975 : 17 марта 2014
20 руб.
Лабораторная работа № 4 по курсу: “Теория сложностей вычислительных процессов и структур”. Вариант - 2.
Номер варианта: 2. Задание на лабораторную работу: “Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры”. Условие задачи: Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет)
User Doctor_Che : 9 февраля 2012
35 руб.
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
Лабораторная работа №3 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Вариант 3
User 1231233 : 31 января 2012
23 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
User zhekaersh : 5 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Лабораторная работа №4 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирае
User Bodibilder : 29 мая 2019
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 1 Вершина 0.
User nik200511 : 7 июня 2018
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5
Лабораторная 4. Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 5 Вершина 4. 0 0 0 23 0 0 0 0 0 0 2 0 0 0 0 0 27 0
User gnv1979 : 29 мая 2017
45 руб.
Зачетная работа на тему: Физические качества, развивающиеся при занятиях легкой атлетикой По дисциплине: Элективные дисциплины по физической культуре и спорту (легкая атлетика)(часть 6)
Содержание Введение……………………………………………………………………. 3 1. Влияние бега на организм человека………………………………….. 4 2. Влияние ходьбы на организм человека……………………………….. 8 3. Влияние физических упражнений на умственное развитие…………10 Заключение…………………………………………………………………13 Список используемой литературы……………………………….………14 Тест по легкой атлетике…………………………………………..……….15 м
User Yekaterina : 25 ноября 2018
70 руб.
«Волоконно-оптические системы передачи» Билет №14
Билет № 14 Факультет МТС Курс магистратуры Семестр 1 Дисциплина: Волоконно-оптические системы передачи 1 Внешний оптический модулятор ЭОМ. Конструкция, принцип действия и характеристики. 2 Брэгговские решетки. Конструкции, принцип действия, применение в оптических схемах. Задача Представить временные диаграммы преобразования двоичной последовательности 101110000101100001 в последовательности линейных кодов NRZ-L и NRZ-S. Определить длительность тактового интервала линейного кода NRZ-S пр
User Margo1234 : 6 мая 2020
150 руб.
Виды бюджетов и взаимосвязь между ними
В зависимости от поставленных управленческих задач различают генеральный и частные (операционные, или функциональные), гибкие и статические бюджеты. Цель генерального бюджета, охватывающего деятельность организации в целом, – интегрировать частные (операционные) бюджеты. Эта задача решается путем составления финансовых бюджетов. Таким образом, генеральный бюджет любой организации (независимо от ее отраслевой принадлежности) имеет одинаковую структуру: он состоит из операционного и финансового б
User alfFRED : 26 октября 2013
10 руб.
Зрительная образная память у дошкольников с нарушениями зрения
Актуальность. На современном этапе происходит изменение отношения общества к лицам с ограниченными возможностями, в частности к лицам с нарушениями зрения. Этот процесс отражается в их интеграции в общество, в разработке новых технологий обучения и воспитания. В рамках этого большое значение придаётся проблеме психологической подготовки детей с нарушениями зрения к школе, в решении которой немаловажную роль играет развитие зрительной образной памяти, так как она обеспечивает длительное хранение
User Elfa254 : 15 октября 2013
up Наверх