Дискретная математика
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,3),(a,4),(c,1),(c,3),(c,4)}; P2 = {(1,4),(2,3),(2,1),(3,4),(4,2)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | 2•x = 3•y}.
No4 Доказать утверждение методом математической индукции:
(11n+1 + 12 2n–1) кратно 133 для всех целых n > 0.
No5 Восемь сотрудников фирмы направляются на изучение иностранного языка, причем нужно распределить их для изучения английского, немецкого, испанского и французского языков (каждый изучает только один язык). Сколько существует различных способов такого распределения? Сколькими способами они могут устроиться заниматься в двух совершенно одинаковых комнатах библиотеки (не менее одного в комнате)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 10 или 22? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x3•y4•z, b=x4•y•z, c=x4•z2 в разложении (2•x+3•y2+5•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 7•an+1 + 12•an = 0• и начальным условиям a1= –15, a2=15.
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,3),(a,4),(c,1),(c,3),(c,4)}; P2 = {(1,4),(2,3),(2,1),(3,4),(4,2)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | 2•x = 3•y}.
No4 Доказать утверждение методом математической индукции:
(11n+1 + 12 2n–1) кратно 133 для всех целых n > 0.
No5 Восемь сотрудников фирмы направляются на изучение иностранного языка, причем нужно распределить их для изучения английского, немецкого, испанского и французского языков (каждый изучает только один язык). Сколько существует различных способов такого распределения? Сколькими способами они могут устроиться заниматься в двух совершенно одинаковых комнатах библиотеки (не менее одного в комнате)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 10 или 22? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x3•y4•z, b=x4•y•z, c=x4•z2 в разложении (2•x+3•y2+5•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 7•an+1 + 12•an = 0• и начальным условиям a1= –15, a2=15.
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Работа зачтена. В работе описаны все замечания. Приложен файл для 5 ой задачи отдельно.
Похожие материалы
Дискретная математика
Kir2791
: 18 сентября 2023
Вариант: No3
Задача I
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={1,2,3,4,5},
A={1, 3, 5}; B={2, 4}, C={2,3,4}, D={5}.
(U \ A)∪ D;
(A ̅∩D ̅ ) ̅;
((A\C)\D)∪B;
(A∩C)∪B;
(C ̅∩B) ̅.
Задача II
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
”Если на небе светит солнце, и не идёт дождь, то погода подходит для пикника”.
Задача
50 руб.
Дискретная математика
Kir2791
: 18 сентября 2023
вариант 2
1 Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Дано:
; ; ; .
Найти:
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
3. Для булевой функции найти методом преобразования минималь
30 руб.
300 руб.
Дискретная математика
ezhva
: 2 августа 2021
Дискретная математика
...
11. Если на множестве всех треугольников на плоскости рассматривается отношение подобия, то данное отношение является отношением ...
...
17. Если из высказывания S1 следует S2 и, наоборот, из S2 следует S1, то высказывания S1 и S2 ... эквивалентными
...
22. Дистрибутивные законы булевой алгебры действительных чисел ...
...
27. Если А - множество всех книг во всех библиотеках России, а В - множество всех книг в библиотеке МГУ по различным отделам науки и искусства, тогда
180 руб.
Дискретная математика
Алексей115
: 14 августа 2020
Оценка - Зачёт
Вариант 16
1) Перестановки с повторениями – дать определение, привести формулу для расчета числа вариантов. В чем отличие от перестановок без повторений? Привести примеры.
2) Понятие связности, компонент связности, сильной и слабой связности орграфа. Построение фактор-графа. Привести пример.
3) Выяснить, является ли функция f(x) = x3+6, у которой область определения и область значений совпадает с действительной числовой осью, инъективной, сюръективной, имеет ли она обратную функ
200 руб.
Дискретная математика
Алексей115
: 12 августа 2020
Вариант 23
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\B = AD (AÇ B) б) (AÈ C) ́ B = (C ́ B) È ((AÇ C) ́ B) È (A ́ B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помо
130 руб.
Дискретная математика
lyolya
: 29 марта 2020
1. Задано универсальное множество U={10,11,12,13,14} и множества A={10,11,12};B={12,13,14};C={10,14};D={12}. Найти результаты действий a) ; б) ; в) ; г) ; д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице ис
70 руб.
Дискретная математика
Sakhal
: 1 апреля 2019
I. Задано универсальное множество U и множества A, B, C и D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По ми
200 руб.
Другие работы
Экзамен по физике. Билет № 8
chita261
: 28 декабря 2014
БИЛЕТ № 8
Задача 1
По прямой линии движутся две материальные точки согласно уравнениям:
x1=A1+B1t+C1t2; x2=A2+B2t+C2t2
где
A1=10 B1=1 C1=-2 A2=3 B2=2 C2=0.2
В какой момент времени скорости этих точек будут одинаковы?
Задача 2
Уравнение вращения диска имеет вид ф=3+2t2-t3 . Найти закон изменения момента сил действующего на тело от времени, если момент инерции диска равен I=0,5 кг м .
Задача 3
Два тела на поверхности стола, массы тел m1=1кг и m2=2кг кг, они связаны нерастяжимой, невесо
100 руб.
Аудит расчетов с поставщиками и покупателями
Elfa254
: 25 марта 2013
Цели аудита расчетов с покупателями и заказчиками 2.2 Учет расчетов с покупателями и поставщиками 2.3 Аудиторская проверка расчетов с покупателями 14 Список литературы: 1. Учет и аудит расчетов с поставщиками и подрядчиками 1.1 Цель проверки расчетов с поставщиками Аудиторская проверка операций по расчетам с поставщиками и подрядчиками
проводится по следующим направлениям: • проверка наличия и правильности оформления договоров; • проверка полноты и правильности оприходования полученных материал
5 руб.
ИССЛЕДОВАНИЕ КЛЮЧЕВЫХ СХЕМ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ. Лабораторная работа №3. Вариант №02
LLIax1985
: 17 апреля 2021
ИССЛЕДОВАНИЕ КЛЮЧЕВЫХ СХЕМ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ
1 Задание на подготовку к выполнению лабораторной работы
Тема: Изучение ключевых схем на биполярных транзисторах
Цель работы: 1. Изучить основные принципы работы ключевых схем (лекции 4 и 6).
2. Приобрести начальные навыки расчёта параметров элементов некоторых ключевых схем.
Выполнению данной работы должна предшествовать предварительная подготовка, состоящая в следующем:
1. Изучение темы и цели лабораторной раб
1500 руб.
Проектирование автотранспортного предприятия легковых автомобилей ГАЗ-3110
proekt-sto
: 5 марта 2022
Содержание:
1. Расчет производственной программы по техническому
обслуживанию........................................................................................ 3
2. Расчет годового объема работ и численности производственных
рабочих....................................................................................................... 9
3. Расчет постов и поточных линий............................................................ 13
4. Расчет площадей помещений...............................
50 руб.